
CURVATURE IN HERMITIAN METRIC 

S. BOCHNER 

Hermitian metric has the peculiarity of favoring negative curvature 
over positive curvature. We shall explain this phenomenon by point­
ing out that in the case of an isometric analytic imbedding the rela­
tive curvature is on the whole negative; also, by reduction to a limit­
ing case of imbedding we shall explain why an invariant metric in the 
theory of Fuchsian groups is likely to be hyperbolic; see Hua [ó].1 

However, on the other hand, an Hermitian metric is very rigid, and 
the possibility of imbedding into a finitely-dimensional enveloping 
space is very remote. The classical conjectures about the possibility 
of Euclidean imbedding are rendered entirely false, but as a com­
pensation, there are more and better theorems about equivalence and 
uniqueness. 

1. Hermitian metric. There are many places in the literature where 
an introduction to the theory of Hermitian metric can be found. We 
shall refer to our own summary as given in Bochner [2, chap. 2] . We 
quote from there that in discussing an Hermitian metric in a space 
Vn of n complex variables zu • • • , zni the basic variables are the 2n 
conjugate complex quantities 

(1) 2i, • • • , zn; zi, - • - , £« 

which we shall also denote indifferently by 

(2) h, t2, • • • , hn* 

Italic indices run from 1 to 2w, Greek indices from 1 to n, and starring 
an index will add to it the value n if it is not greater than n} and sub­
tract n from it if it is not less than n + 1. All scalars and components 
of tensors are power series in (1), and they are always self-adjoint, 
meaning that starring all indices in a component of a tensor will 
change its value into its conjugate complex. Scalars are real-valued. 

The fundamental tensor ga has the properties 

gii = Hit gafi = £«*£* = 0 

in addition to the self-adjointness property ga^—l^\ also gap is 
positive-definite. In particular, we have 
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(3) ds2 = gijdtidtj = 2gap*dzadZfl. 

Finally, we have Kaehler's restriction (non-torsion) 

°g«y* dgfiy* 
(4) 

which is equivalent with 

dzp dza 

d2$ 
(5) go? = ——7 

OZaOZp 

for some scalar function 3>(s, 2), locally. On replacing <& by (3> + <ï>)/2 
we can always make it real-valued. If we form r j t by the usual for­
mula, then only the unmixed components T%y and their conjugates 
can be not equal to 0, and 

aaw 

(6) «-"«"TT1-
OZy 

If we form the curvature tensor Rijki by the usual formula, then it 
satisfies all classical relations. Furthermore, only the components of 
the form Rap*y8*, Rap*y*ôi Ra*py*; Ra*py*ô can be different from 0. 
Finally, we have 

a d a 

R$y*8 = Tfis 
ÔZy 

and therefore 

d 
R<x*py*Ô = ga*p 

dz 
d 

ÔZy 

Hence we have finally 

y \ dz5 / 

—[*«*>&" -7—) - r ——— 
Zy \ dZ8 / OZ8 OZy 

(7) R^t = — — - r — — - • 
dZydZs OZS OZy 

In particular we have the symmetry relations 

(8) Rap'yf = Ryp'af = Ra8'yp* 

which are unmatched in the case of real variables. 

THEOREM 1. If two tensors gij of our description in the same coordi­
nates have the same curvature tensor Rap*y&*, then they are equal to within 
an allowable transformation. 
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The conclusion also holds if the components of the type RJy8* or of 
some other type are assumed to be the same. 

PROOF. We take one of the tensors gij and we introduce the power 
series 

(9) $(zh • • • , zn] zh • • • , zn) 

for which (5) holds. We can obviously omit from (9) all monomials 

(10) azi • • • zn zi • • • zn 

for which either pi+ • • • +pn = 0 or g i+ • • • +<Zn = 0, and thus as­
sume (9) in the form 

(11) aafrze&fi+ $t(ztz) 

where aap = g<*p(0), and $ 3 contains only monomials with 

pi + - • • + pn + qi + • ' • + qn â 3. 

An allowable transformation will carry (11) into 

n 

(12) J2zaZa + $3(3, z), 

and on making it real, whenever (12) contains a monomial (10) it 
also contains âzPl • • • z^zl1 • • • s j \ Therefore, we can put 

n 
$3 = 2 3 (*afa(z) + *«ƒ«(«)) + <&<Ltl(z, Z), 

a=l 

where each function/i, • • • ,ƒ„ (2) is a power series in Z\, • • • , s»with 
terms of total degree not less than 2, and $2,2 contains only terms with 

pi-\ + Pn^2 and gi H + ?n è 2. 

After the allowable transformation 3a' =za+fa(z), our function has 
the form 

n 

(13) 3> = 23 *«*« + ^2,2(2, 2). 
a=l 

If now we introduce the derivatives 

dzpi • • • dzpndzqi • • • dzqn 
1 n 1 n 

at the origin, then our normalization has fixed their values in case the 
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total order is 1, 2 or 3; and for the total order 4, 5, 6, • • • if either 
pi+ • • • +pn^l or qi+ • • • + g n ^ l . Now, if we write equation (7) 
in the form 

(14) „ ,-a „- " «"* "F" 4 - + *«" -
dZaOZpdZydzs dz& dZy 

and if we remember that each component gp(T* is a rational function 
of the components gap*, then the missing derivatives of order 4 can 
be computed directly from (14) ; furthermore, the missing derivatives 
of higher order can be successively computed by taking all possible 
successive derivatives of (14). Also these computations are unique, 
which proves our contention. If the components RJyp are given, the 
same conclusion will follow from the equations 

d2ga(3* pa* dgpfi* dgff*a , 
_- g __^ 1_ gptKayl*, 

dZyÔZi ÔZfi ÔZy 

and this completes the proof of Theorem 1. 

THEOREM 2. If the metric tensors ga and ha have the same geodesies, 
then their affine connections T\j and A# are the same. Thus a projective 
collineation is automatically an affine collineation. 

PROOF. AS in the real case we have, see [3, p. 132], 

AIJ - Tu = bki + fyi. 
Putting l=a, i=a, j = y*, we obtain t/y = 0, and similarly ^ 7 = 0. 

2. Sectional curvature. A two-dimensional surface element through 
the origin is given in the form 

(15) h = \*x + tfy, 

tha t is 

(16) Za = Xa# + M*?, Za = X"* + M ŷ, 

where x and y are real parameters, and the systems of complex num­
bers {\a} and {/*"} are nonproportional. If we make the decomposi­
tion 

Za = %a + (— 1) y a, A = X0 + (— 1) Al, JU = MO + ( ~ 1) Ml» 

then we can also write 

(17) %a = Xox + Moy, y a = Xix + ii"y. 

We now set up the number 
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(18) K - * " * W * * 

and we claim that it is the real-valued curvature for the surface ele­
ment (17) and the line element (3). In fact, if we denote the real com­
ponent ya by xa+n, if we write the line element (3) in the real form 

n% j [^ oo j a %%a cc j, 

if we introduce the ordinary curvature tensor corresponding to the 
latter line element, if we form with that curvature tensor the sectional 
curvature for the section (17), and if finally we carry out purely for­
mally the transformation of coordinates 

Za
 ==: Xa T ( 1) Xa+ni Za = %a \ l j %a+n 

as if it were an allowable transformation ; then by formal properties 
of invariance the curvature will appear in the form (18). 

THEOREM 3. For n>l> if at every point the sectional curvature K is 
the same for all possible two-dimensional sections, then the curvature 
tensor is identically zero. 

PROOF. Relation 

(19) [RWh - K(ghigik - ghkgij)]*h»W = 0 

is fulfilled for 2n independent variables Xa, /xa and their conjugate 
values X", /*«. We are now applying a fundamental lemma to the 
effect that whenever a power series 

$ ( ^ 1 , • • • , Um\ VU * • • , Vm) 

is zero identically in #i, • • • , um for Vk — ük, fe = l, • • • , n, then it is 
identically 0 in the independent variables w&, u*. If we apply this to 
(19) then for K independent of X and ju, we obtain by a classical formal 
procedure the relation 

(20) Ruik = K(gh3-gik — ghkgii). 

In particular, we obtain 

and on applying the important relation (8) we deduce 

Kgal*gfi*y = Kgyt*gp*a. 

If we multiply both sides by ga*mgP*y and contract we obtain n2K = K, 
and hence K = 0 for n > 1. 
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DEFINITION. We call a section holomorphic if it is tangent to an 
analytically imbedded complex "curve." It is not hard to see that 
(16) is holomorphic if an only if there exists a non-real number 4> such 
that ixa =#Xa . If we transform the two real parameters xy y by a suit­
able nonsingular affine transformation # '=0i#+02 :y, y' = <l>sx+<l>4y 
with real coefficients 0i, <£2, $3, 04, then we can obtain the normaliza­
tion 

(21) /*« = ( - l)i/«X«; 

that is, the section can be written in the form 

(22) z« = X«s; z = * + ( - I)1 '2?. 

THEOREM 4. For a holomorphic section (21) we ftape 

tf^i-X-VXifc** 

(g«**7S* + g7H*««8*)VX*X*A8* 

PROOF. This follows from the fact that for an arbitrary section (16) 
we have 

(24) Rkukkhnw - ^ ^ ( ^ v 1 - x<vo(xv - x«v) 
and 

(«*#<* - ghkguWuW' 

( . = ghiWgiwW - ghkWgij^' 

= «<***• [(xv - xv) ( W - XV) 
+ (xv - \V)(^V - xv*)]. 

We shall now draw an interesting conclusion. 

THEOREM 5. If at a point all holomorphic sections have the same curva­
ture K = b, then at that point we have 

b 
(26) Rafi'yf = ~ — (g«fi*gyt>* + gyp'gab*). 

Alsoj if (26) holds at every point, then b is a constant. 

PROOF. By assumption we have 

Raw + — (ga^gys* + gpygar) X-X'VX8* = 0. 
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At first the relation holds whenever Xa* is conjugate complex to Xa. 
By our previous argument it holds for independent variables (Xa, X *̂), 
and relation (26) follows now from the fact that both sides of it are 
symmetric in the pairs of indices (a, y) and (|8*, 5*). 

Next, Bianchi's relation specializes to 

(27) R<xP*y8*,e = Rap*e8*,yy 

and if (26) holds at all points we obtain 

This shows that b(z, z) is independent of the variables za. The inde­
pendence Of Za follows from Ra&*yb* ,e* = R<xP*yi* ,h*> 

3. Fubini spaces. For arbitrary real b we put 

2 / b » \ 2 
(28) $ = — log ( 1 + — E ZaZa) = — log S. 

b \ 2 a=i / b 

Therefore, 

d 2 $ 8ap* b ZaZfl 
(29) 

dzadzp S 2 

ds2 

(30) -

l ( I |2\ 

X I dZa |2 + — ( X) I *« I2 X I dzP I2 _ Z) *«^2« ) 

At the origin we have gap* = Sai3* and on computing (7) we obtain 

b 
Ra$*yh* = — (àap*Syô* + 5a5*Ô/37*). 

Thus (26) holds at the origin. The validity at other points follows 
from the existence of a transitive group of analytic homeomorphisms 
which leave the line element (3) invariant, see Fubini [4], 

THEOREM 6. For given b all spaces of constant holomorphic curvature 
b are equivalent. 

PROOF. The conclusion follows from 

d2g*P* . dgpp* dga*a b 
~ "aa ~ — (gcc^gyô* + ga8*gyfi*) 

dZydzs dz$ dzy 2 

as in the case of Theorem 1. 
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THEOREM 7. For the Fubini space blithe general sectional curvature 
K lies in the interval 

(31) 1/4 S K ^ 1. 

The maximum value K = l is reached only if the section is holomorphic 
and the minimum value K = 1/4 is reached, among others, if the section 
is totally real, that is 

(32) xa = \°x + p*y, ya = 0; a = 1, • • • , n. 

PROOF. At the origin, if we use (24) and (25) and if we put 

Q(x, M) = Z **M**, 
a 

we obtain for K the value 

Q(\, \)QQi, M) + Q(X, M)Q(M, X) ~ 6(X, M)2 ~ 60», X)2 

4Q(X, \)Q(n, /*) - 2Q(X, M)G(M, X) - Q(X, M)2 - <2(M, X)2 ' 

If we introduce the quotient 

Q(X, M) 
J( = _ re,* 

(6(x, x)Q(M) M))1'2 

then ÜT has the value 

1 + r2 - 2r2 cos 2^ 3 1 - r2 

(33) — — = 1 
4 - 2r2 - 2r2 cos 2^ 4 1 - ((1 + cos 2£)/2)r2 

We always have r ^ 1. The extreme value r = 1 can only be reached if 
the section is holomorphic, and then (33) has the value 1. For r<l, 
the minimum is reached if / is real-valued, thus if y^X*Ma* is real-
valued. This will in particular occur for a section (32). 

The Ricci tensor is defined by 

Rij = gPqRpiiq, Raf}* = gpVi?apV/3*, 

and it has the important property [2, formula (58) ] 

a2 log G 
(34) Rap. = 

dzadzp 

where G is the determinant of the matrix gap*. The Ricci curvature 
in a given direction X* is defined as 
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THEOREM 8. For a Fubini space we have 

b 
Rap = - — (» + l)g«/3*î 

awd the average Ricci curvature 

K n + 1 
= J 

2n — 1 4w — 4 

which is everywhere constant, decreases monotonely towards the smallest 
possible value 1/4, as n—* oo. 

The proof is quite obvious. 

THEOREM 9. If for a line element we have 

(35) Rap* = 6(2, z)gap9 

then b is constant. In other words, if one of our spaces is an Einstein 
space at each point, it is so universally. 

PROOF. By (34) we have dRap/dzy = dRay*/dzp. Hence we obtain 

A . 1 dgafi* A . A dgay* 
Oty*gafl* + 0 ~- = 0,j3*g«Y* + ° ~Z 

OZy OZp 

and therefore bty*gap* = btp*gay*. This implies bty* = 0 and similarly we 
obtain &,7 = 0. 

For real spaces of constant curvature there exist modified line ele­
ments in terms of normal coordinates. In order to justify the absence 
of an analogue for Fubini spaces we shall point out a very general 
theorem. 

THEOREM 10. For a line element of our description there exist no 
allowable normal coordinates except in the obvious case of a flat space. 

PROOF. Normal coordinates have the usual consequences. In par­
ticular, we have 

that is 

or 
d2$ 

dZadZB 
Zfi « gap(fl)zp. 
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For the function 

iK*, g) = $ - ga8*(0)zaz3 

we then obtain 

2|5 = 0, a = 1, • • • , n, 
dzadzs 

or 

— zB=F(z). 
dza 

On putting zp = âpÇ, H(z, â,f) =^(z, a f), we then obtain ÇdH/dÇ 
= F(âÇ) ; and since F(z) has no constant term we obtain 

fl(a, â, f) = *(*,*) + 5 ( â f ) . 

Therefore 

*(*, z) = *(*, l/f) + 5(1). 

But the left side is independent of J", and so we have finally 

iKs, s) = -R(s) + S(z) 

and thus d\p/dzadza=zQ. Thus gaB*(z, z) E=ga/3»(0), and our line element 
is flat. 

However, as was shown in the proof of Theorem 1, there always 
exists a coordinate system which is geodesic a t a prescribed point; 
meaning that the derivatives dgap*/dzy and therefore also the coeffi­
cients T%y vanish at the point. 

4. Imbedding. In addition to our space Vn with the metric (3) we 
consider a space Vm, m>n, in the complex variables wi, • • • , wm, 
m>nt with a metric 

(36) 2h^*(wt w)dw^dwrj 

where £, rj, f, x==l> 2, • • • , m\ and we assume that there exists a 
complex-analytic transformation 

(37) wk = fi(zu • • • , zn), £ = 1, • • • , m, 

which is an isometric map of F n into Fm. Thus 

(38) g<*. = hwfi,af\ï 

vrhereftta=dfi/dza. 
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THEOREM 11. If we denote the curvature tensor of Vn by Ra^ys* and 
of Vm by Stn*çx*, then we have 

(39) * « , . * . = StwP.aM.yf*,* + hwf*9.,ypj,t 

where ft,a,y denotes the second covariant derivative of f*(z) relative to the 
metric (3). 

PROOF. We write (7) in the form 

d2ga/3* p dgpp* 
(40) Rap*y&* = — Tay dZydz8 dzs 
and similarly 

(41) s ^ = —^-Att-rT-> 

where A# is the affine connection pertaining to (36). Take a point z° 
and its image w°. I t can easily be seen that it will suffice to prove 
(39) under the assumption that the ^-coordinates are geodesic at z° 
and the ^-coordinates are geodesic at w°. In this case all quantities 

——> i>7, —— , A„r 

dZy dwç 
and their conjugates are 0, and we easily obtain (39) by substituting 
(38) in the right side of (40) and carrying out the differentiation. 

We now take a fixed point z° in Vn, and we introduce an arbitrary 
surface element 

(42) za ~ za = \ax + fi"y 

and its image 

(43) w% — w$ = L x + M yf 

where 

(44) L« = f*,a\", M* = ƒ«,«/*«. 

If we multiply both sides of (39) by 

(45) (XV* - X*V)(XV - X V ) 

and add up over a, ]8, 7, S we obtain the following theorem. 

THEOREM 12. The sectional curvature 

Rahcd\anhK»d 

(46) 
(gacgbd ~ gadg&c)XVXV 

StwP.aM.yf*,*
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in Vn is the sum of the corresponding sectional curvature 

SukiL'MiL'M1 

(47) -
(hikhn - hnh^UM^M1 

in Vm and of the relative curvature 

(48) 
(gacgbd — gadgbc)XVXC /Xd 

For a holomorphic section (22) the relative curvature has the value 

_ K-P^wf'^W' 

It is therefore negative or 0, and it has the value 0 only if the section is 
such that 

(50) P,«,yW = 0, { = 1, • • • , m. 

Condition (50) formally corresponds to directions of asymptotic lines in 
the real case. 

For the Ricci tensor we have 

(51) Ra8> = S * W W + K*gryP,«,vf\t,B 

and the Ricci curvature — -RödXaX VgadX°Xd is the sum of — 5»-y DD'/hijDL* 
and of the relative Ricci curvature 

( 5 2 ) - hwf'f*.:*afi*.*» . 

The last term is negative or 0, and it is 0 if and only if 

(53) P,a,y\
a = 0, £ = 1, • • • , m; y = 1, • • • , n, 

which is a stronger condition than (SO). 

If Vm has the Euclidean metric 

(54) dwidwi + • • • + dwmdwm, 

then (48) is the entire amount of the sectional curvature of Vn. Now, 
put ra = 3, w = 2, and 

1 2 3 — 1 2 2 

ƒ (0) = 0i, ƒ (0) = z8, ƒ (0) = 2 (0i + 02). 

The metric of V2 is then dz\dz\ +dz2dz2 + (zidzi -\-Z2dz2) {z\dz\+z2dz2). At 
the origin 01 = 02 = 0, the 0-system is geodesic, and the numerator in 
(48) has at that point the value 

file://-/-Z2dz2


i947] CURVATURE IN HERMITIAN METRIC 191 

3 

(55) X) ( X V " V V ) 2 . 
a,0=1 

Since the denominator of (48) is always positive, see (25), the alge­
braic sign of (48) is that of (55). If, for instance, all components X", tf 
are real, that is if our section is totally real, then (55) is positive, and 
thus we see that the relative sectional curvature may be positive for 
a nonholomorphic section. 

THEOREM 13. For n = l, if a line element 

(56) ds2 = g(z, z)dzdz 

of the special form 
00 

(57) g(z, 3) = ] £ a*H* 

can be isometrically imbedded in Vmi with the Euclidean line element 
(54), for some finite m, then the power series (57) is a finite polynomial 
in z,z. In particular, the line element 

dzdz JUL 
(58) ds2 = = X) (P + l)zvzvdzdz, 

(1 - zz)2
 p=0 

although strictly hyperbolic, cannot be so imbedded. 
For n^l, if in the line element 

(59) &*•(*» z)dzadzp 

in the power series of all gap* only those monomials 

(60) Zi ' ' ' ZnZi ' ' ' Zn 

occur f or which 

(61) pi + • • • + pn = q\ + • • • + gn, 

and if (59) can be isometrically imbedded in a Vm, then all gap(z> z) 
are finite polynomials. In particular, the line elements arising in all 
types of matrix spaces2 cannot be so imbedded. 

PROOF. For n = 1, our imbedding means the existence of functions 
00 

(62) wk = fk(z) = X ck,Pzv, k = 1, • • • , my 

such tha t 
2 See Siegel [7] and Hua [5] and [ô]. 
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dfk(z) 
= ]C &pZpz*. 

Therefore 

m 

(63) P^ZL CktPCk,q = ôpqap-i. 

For each p, the system of numbers 

Cp = \cicp), k = 1, • • • , m, 

is a vector in complex m-space. By (63) any two of the vectors are 
orthogonal, and therefore all but at most m of them must be identi­
cally 0. Therefore at most m2 among the numbers Ck,P can be not equal 
to 0. Each fk(z) is a polynomial, and so is g(z, z). 

For n*z 1, if there exists an imbedding, then we write the mapping 
functions in the form 

00 

(64) fk(za) = XI Ck,p(z*) 
p=l 

where Ck,P is a homogeneous polynomial in the variables za of degree 
p, or identically zero. Now, put 

(65) za = f J, za = fJ, 

where {f a} are arbitrary parameters in the neighborhood of the origin 
and t is the complex variable proper. Thus, (65) is a family of com­
plex curves. For each one we derive from (59) a line element 

g(f, f;t,t)dtdt, 

where by our assumptions on (59), 

g(r,r;U) = ZGPG*, r)w. 
p 

On substituting (65) into (64), we obtain 

/*(r«0 = E <*,p(r«)**, 
p 

and by our previous argument, corresponding to each special point 
{ta} » only ^ 2 among the numbers CktP(ta) can be not equal to 0. Since 
each ck,p(£) is a polynomial, it follows easily that all but m2 among 
them must vanish, and thus fk(za) is a polynomial. This proves the 
theorem. 

Thus far we have been discussing imbedding into a Vmy for finite m. 

file:///cicp
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The situation is radically different if we allow the imbedding space 
to become infinitely-dimensional. One possibility is to view certain 
constructions as limiting processes of ordinary imbedding; this will 
be our method of interpreting groups of automorphisms. However, 
another possibility is to actually perform an imbedding into a space 
of countably many variables w\r w%, Wz, • • • with a suitable metric 

A€n*(w, w)dwfdw,9 £, r? = 1, 2, 3, • • • . 

The most immediate line element would be the Hubert metric 

dwidwi + dwidwi + • • • . 

In this case the hyperbolic line element (58) can very well be im­
bedded, namely by the transformation 

wh = **/(* + 1)1/2, * = 1, 2, • • • . 

Furthermore, our previous theorems remain valid, and thus for in­
stance an elliptic line element cannot be isometrically imbedded in 
flat Hubert space. Conceivably every finite-dimensional Hermitian 
line element without torsion could be imbedded into some universal 
countably-dimensional space with a fixed elliptic metric. I t is inter­
esting to note in this connection that the method of S. Bergman [l ] 
for constructing an Hermitian metric on a domain of several complex 
variables consists precisely in constructing an analytic imbedding of 
the domain into such a universal enveloping space, the enveloping 
domain of Bergman being the countably-dimensional Fubini space 
with positive curvature 6 = 1. 

We shall not take up this problem in any way; however, we shall 
point out the following curious little theorem, which apparently is 
not true for finite m. 

THEOREM 14. Whenever a Vn can be isometrically imbedded in flat 
Hubert space it can also be isometrically imbedded in infinitely-dimen­
sional Fubini space with 6 = 1. 

PROOF. By assumption we have relation (5) with 

*(M) = £ | ƒ*(««) K 
fc-l 

On putting 3> = log y//, that is, \l/ = e®, we obtain 
00 

* =• i + E I «»(*.) I2 

for suitable functions gfc(s«), and this is the substance of the theorem. 
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5. Group invariance. We consider a domain D in the space of the 
complex variables Z\y • • • , zn, and an arbitrary topological set T, and 
we consider a continuous function 

(66) f(6; za) 

in r x ^ which is analytic in D. We further assume that there exists 
some kind of integral in Y such that 

(67) *(*, z) = ƒ f(6; z)ffi£)dO 

exists in Z>, and that in the neighborhood of any point z° it is a uni­
form limit of an approximating sum 

8 

T,*rf(0r; z)f(fö~z), A r > 0 . 

If we now form 

d2$ 
(68) £«/3* 

dZadzp 

then our restriction (4) is met; also ga$* is non-negative, and we add 
the explicit assumption that it is strictly positive definite. The ap­
proximating tensor 

(69) har = ~^— t, | £*M; z) |* 
OZaOZfi r=l 

may be also assumed positive definite, and may be looked upon as 
resulting from an imbedding of D in Euclidean V8. If we apply Theo­
rem 12, and make the limiting passage from (69) to (68), we see that 
the resulting line-element (59) on D has nonpositive holomorphic and 
Ricci curvature. 

We shall now vary the set-up slightly. We consider not a family of 
functions, but a family of analytic homeomorphisms Wk=fk(0; za), 
k — 1, - • • , n, of D into itself, and we assume that T is a locally com­
pact group of such homeomorphisms. Correspondingly, we put 

(70) * ( M ) = / r ( Ê | / * ( 9 ; * ) | , ) < w 

where dd represents integration with respect to a Haar-measure, say 
a left-invariant one. Thus we have 
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gap*dzadz0 = 1 ( 2 ^ ) dQdZadzp 

(71) 

= ƒ (t|fe(M)|2)^. 
Now, if 0' is a fixed element of I \ and if we put s« =ƒ«(#'; z) =d'za, 
then we have Wk(dd'; z) =wk(d; z'), and we find that the line element 
is group invariant. We can now state the following very conditional 
result. 

THEOREM 15. If Y is a transitive group of homeomorphisms of a do­
main D, if the general homeomorphism can be written in the form 

(72) wk = //c(X; a, d; za) 

where a = (ai, • • • , an) is an arbitrary point of D and X is a set of 
parameters which describe the stability subgroup T0 of T, if dX designates 
Haar-measure on To, if there is given in D a volume element 

n 

dva = p(a, a) \ \ daadda 

which is invariant under all transformations of V, and if the integrals 

/

( n dfkÇk; a, a; z) d/*(X; a, d;z) \ 
( 2^ : : ) dvadK 

r0xö \ *-i dza dzp / 

converge uniformly in a neighborhood of every point z of D, then the 
corresponding Hermitian metric has no torsion and is group-invariant, 
and the curvature of holomorphic sections and the Ricci curvature are 
all nonpositive. 
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