A SIMPLE PROOF THAT π IS IRRATIONAL

IVAN NIVEN

Let $\pi = a/b$, the quotient of positive integers. We define the polynomials

$$f(x) = \frac{x^n (a - bx)^n}{n!},$$

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x),$$

the positive integer *n* being specified later. Since n!f(x) has integral coefficients and terms in *x* of degree not less than *n*, f(x) and its derivatives $f^{(i)}(x)$ have integral values for x=0; also for $x=\pi=a/b$, since f(x)=f(a/b-x). By elementary calculus we have

$$\frac{d}{dx} \{F'(x) \sin x - F(x) \cos x\} = F''(x) \sin x + F(x) \sin x = f(x) \sin x$$

and

(1)
$$\int_0^{\pi} f(x) \sin x \, dx = \left[F'(x) \sin x - F(x) \cos x \right]_0^{\pi} = F(\pi) + F(0).$$

Now $F(\pi) + F(0)$ is an *integer*, since $f^{(j)}(\pi)$ and $f^{(j)}(0)$ are integers. But for $0 < x < \pi$,

$$0 < f(x) \sin x < \frac{\pi^n a^n}{n!},$$

so that the integral in (1) is *positive*, but arbitrarily small for n sufficiently large. Thus (1) is false, and so is our assumption that π is rational.

PURDUE UNIVERSITY

Received by the editors November 26, 1946, and, in revised form, December 20, 1946.