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Let D be a domain of the extended s-plane (z~x+iy) of finite 
connectivity n, which contains the point z = <*> and is bounded by n 
proper1 continua. According to a fundamental theorem in the theory 
of conformai mapping of multiply-connected domains [4, 7]2 there 
exists one and only one function f =*SQ{Z) which in the neighborhood 
of z = oo has a Laurent expansion of the form 

(1) f = se(z) = z + — + • • • 
z 

and which maps D conformally and bi-uniformly upon a domain De 
of the f-plane bounded by n rectilinear slits each of which makes the 
angle 0 with the positive direction of the real axis. The domain De is 
itself also uniquely determined for each value of 0. 

In the present paper we shall derive two inequalities involving 
the coefficient a$ appearing in (1) and the outer measure A of the 
complement (with respect to the entire plane) of the domain D— 
that is, the greatest lower bound of the total area enclosed by a set 
of analytic curves surrounding the boundary continua. The first of 
these inequalities is the following : 

A 
(2) Re (ae<r™) £ — • 

2x 
The second inequality, which will be derived by using the theory 
of orthonormal systems of analytic functions [l, 2, 9, 10], constitutes 
a strengthening of (2), namely: 

\aB\2 A 
(3) Re (aee-™) ! — ! — ^ — • 

dQ — #r/2 2 X 

It suffices to prove the inequalities (2) and (3) for the case when 
the boundary continua of D are closed analytic curves Ci, C2, • • • , 
Cn, for it is known that D can be approximated by an increasing se
quence of domains having such boundaries for which the mapping 
functions corresponding to (1) will converge to se(z)y so that (2) and 
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1 A proper continuum is one which does not consist of a single point. 
2 Numbers in brackets refer to the bibliography at the end of the paper. 
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(3) will continue to hold in the limit, when A is interpreted in the 
manner explained above. 

Since the boundary of D is for the present assumed to consist of 
analytic curves, it follows that se(z) remains analytic there as well as 
in the interior of D. It then follows, taking account of the form of 
se(z) in the neighborhood of s = oo, that d(se—z)/dz is quadratically 
integrable over D, that is, 

(4) J#- (( |i- (se-z) 
J J D \az 

dxdy 

exists. 1$ is real and non-negative, vanishing if and only if se — z, that 
is, if and only if D is identical with the domain into which it is to be 
mapped. Now the double integral appearing in (4) can be transformed 
into an integral taken along the boundary curves of D, as follows: 

1 *pf r /dse \ 

(s) / * = - - £ (*-*)(—-1J&, 
2t k-\J ch \dz / 

the sense of integration being positive with respect to the interior of 
each boundary curve. By multiplying out the integrand, 1$ can be 
expressed as the sum of four terms, namely: 

1 *=» r dse 
(6a) - — Zs I so—-dz, 

2i k^iJ ck dz 
1 Tc=n /• 

(6b) — E I S*fa, 
£1> k=iJ ck 

1 *=? r dse 
(6c) ir2~< 1 z~T~dz> 

li fc^i*/ ck dz 
1 ^c==n (* 

(6d) - - E zdz. 
2t fc=i J ck 

The integrals (6a), (6b), (6c) will now be evaluated by employing 
an artifice which has been used with great success by Grunsky [4]. 
One observes that on each curve Ck the expression e~i6(se~-Ck) is real, 
where f& is any point on or collinear with the image of Ck, so that 

(7) se = e~~2idse + constant.3 

Replacing Se in (6a) by the right-hand side of (7) and recalling 
that se(z) is single-valued in D, one sees that (6a) vanishes. By per
forming the same substitution in (6b) and then integrating around a 

3 In general, of course, this constant will be different for each C&. 
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large circle lying entirely within the domain of convergence of the 
expansion (1) instead of around the curves Ck (which is justified by 
the Cauchy integral theorem), one finds that (6b) is equal to Tra$e~~2i9. 

(6c) may be evaluated most easily by integration by parts; the 
integrated part vanishes, leaving an integral which is the conjugate 
of (6b). Thus, (6c) is equal to 7râee2id. 

Finally, (6d) is easily seen to be equal to — A. Thus, equation (4) 
may be rewritten in the form 

(8) Ie = - A + 2T Re (aee-2ie). 

Since 1$ is of positive definite character, vanishing, as mentioned 
above, if and only if Se — z, the inequality (2) follows directly from 
(8).4 Since the real part of a complex number is at most equal to its 
absolute value, there is immediately obtained from (2) the following 
lower bound on \a$\, valid for all values of 0: 

(9) l * | £ - -
2T 

That the factor 1/2TT appearing in (2) cannot be replaced by any 
larger number is easily seen by considering the mapping of the ex
terior of an ellipse upon the exterior of a slit parallel to the major axis 
and letting the eccentricity of the ellipse approach unity. For example, 
for 0 = 0, the exterior of the ellipse x2RA/(R2+l)2+y2RA/(R2-l)2 

= 1 (R>1) is mapped upon the exterior of the slit [ — 2, 2] of the 
f-plane by eliminating w between the pair of equations: 

(10a) z = w + 1/R2w, (10b) f « w + 1/w. 

It is easily found that the Laurent expansion for f at z = <*> is of the 
form 

(11) f « z + 1 
z 

so that , in this case: 

Re (aee-™) 1 - l/R2 R2 

(12) — " -
TT(1 - 1/R*) TT(1 + R2) 

Letting R (and hence the eccentricity) approach unity, the right-hand 
side of (12) is seen to approach 1/27T. 

4 The evaluation of positive-definite integrals has been used frequently as a means 
of obtaining inequalities in the theory of conformai mapping. To mention only one 
example, one may cite the <<Flèlchensatz,, of Bieberbach [3], 
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A more refined estimate than (9) is easily obtained in the following 
manner. First, by setting 0 = 0, 0 = 7r/2, 0 = 7r/4, and 0 = 37r/4, respec
tively, there are obtained from (2) the inequalities: 

A A 
(13a) Re ao = — > (13c) I m aT/i è — > 

2ir 2w 
A A 

(13b) Re avl2 S > (13d) Im a3îr/4 ^ 
2TT 2X 

(Grunsky , in [5] , and Schiffer in [8] and [ lO], showed no t only 
t h a t ao — Gr/2 ( the " span" of D) is real , b u t t h a t 

2,4 
(14) a0 — ar/2 è 

T 

While neither of these results can be obtained from the considera
tions presented here, it is of interest that previously no estimates 
like (13a) and (13b) for these coefficients separately had been ob
tained.) 

Now it is known [4] that for each value of 0, So(z) can be expressed 
as a simple combination of SQ(Z) and sT/2(z), namely 

(15) se(z) = eie{so cos 0 — w T / 2 sin $}. 

Combin ing (15) wi th (1), t h e following equa t ion is ob ta ined for a$: 

(16) ao = eie{ao cos 6 — iav/2 sin d}. 

Now, if we set ao^a+ift and aT/2 = Y+ij8 (here we use the fact that 
öo--öir/2 is real), it is found that (1) may be written in the form 

a — 7 a + y A 
(17) 1 cos 20 + p sin 2d ^ — • 

2 2 2TT 

Since th i s inequal i ty holds for all va lues of 0, it holds when 0 is so 
chosen as t o minimize t h e lef t-hand side of (17). T h e resul t ob ta ined 
is 

a - Y / / « + Y V V/2 A 

which is completely equivalent to (17). 
The inequality (18) admits an interesting geometrical interpreta

tion, which may be seen in the following manner. From (16) and the 
real character of a0--ar/2, it is easily shown that the point do, when 
plotted in the usual manner, describes the circumference of a circle 
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with radius R = (a—y)/2 and with center at the point (a+y)/2+ip, 
whose distance r from the origin is precisely the second term of the 
left-hand side of (18). Thus, it is seen that the left-hand side of (18) is, 
both in magnitude and sign, equal to the distance between the origin 
and the nearest point of the circle described by the coefficients a$. 
The inequality (9) may be seen geometrically from (18), while it is 
clear from either (13a~d) or (18) that the origin lies inside (or per
haps on) the aforementioned circle. This latter fact has previously 
been obtained in [4] by Grötzsch, who showed that for the class of 
all biuniform conformai mappings of a fixed domain D (of the type 
described at the beginning of this paper) having at infinity a Laurent 
expansion of the form 

(i9) r = z + — + • • • , 
z 

the coefficients c cover a circular area of the complex plane whose cir
cumference is described by the points ae; since f ~z is a mapping be
longing to the aforementioned class, it follows that the origin cannot 
be exterior to the circle. By combining this observation with the fact 
that a^ — av/2 is real and equal to the diameter of the circle described 
by the coefficients ae, the inequalities 

(20a) Re a0 à 0, (20b) Re ar/2 g 0 

are obtained. These results are contained in (13a) and (13b), which 
were obtained by much simpler considerations than those used by 
Grötzsch. 

As stated previously, we can strengthen the inequality (2) by 
the use of the theory of complete systems of orthonormal functions. 
As shown in [ l ] , there can be chosen for every domain B whose 
boundary does not consist entirely of isolated points—that is, con
tains at least one proper continuum—in infinitely many ways an 
orthonormal5 sequence of functions {fk(z)}, each of which is analytic 
and uniform, and possesses a uniform integral in B, such that every 
function f(z) defined in B which satisfies the above conditions and 
is quadratically integrable over the entire domain can be expanded in 
a series of the form 

(21) ƒ(*) = JïctMz) 

which converges uniformly to f(z) in every closed subdomain of B. 
5 Orthonormality is defined by the usual condition: ffBfm(z)fn(z)dxdy=Ômn. 
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Such a sequence of functions is called a complete system for the 
domain J3. 

I t is known tha t the kernel function of the domain, defined as 
follows : 

(22) K(z,~zi) - E / * ( * ) 7 ^ 
k**i 

is independent of the particular choice of the complete orthonormal 
system \fk(z)}. Identifying B with the domain D considered in §2, 
let two different complete orthonormal systems be constructed, be
ginning with the functions :6 

dse/dz — 1 
(23a) g(z) -

(2TT Re (aee-2id) -A)1'2 

and 

d(s0 — $r/2)/dz 
(23b) h(z) -

(2w(aQ - <M2))
1/2 

respectively. (It follows from (8) that g{z) is normalized, while Schiffer 
[lO] has shown this for h(z).) 

Letting Si=2, it is obvious from (22) that 

(24) K(z, 8) i£ | g(z) |«. 

Multiplying both sides of (24) by |g | 4 and letting |z|—»«>, one ob
tains, taking account of (1) and (2), 

(25) lim \z\*K(z,i)^ ' j â O . 
Î l̂ oo 2ir Re (aee 2%e) — A 

On the other hand, it is proven in [lO] that every function which 
belongs to the class described at the beginning of this section and 
which is orthogonal to h(z) vanishes at s = oo to at least the third 
order, so that 

(26) lim | 0 \*K(z, z) = lim | z |41 h(z) |2 = — (a0 - ar/i). 

Combining (25) with (26) one obtains the inequality (3), which is 
seen to constitute a strengthening of (2). Replacing a$ in (3) by the 
right-hand side of (16), one finds that the left-hand side of (3) is inde-

6 Here we disregard the special case s9**z, for which (3) is directly seen to hold. 
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pendent of 0, so that (3) may be rewritten in the simpler form 

(Here, as before, ao = a+ifi, ar/2 ==Y+*j8.) If we note that (<ry+j32) is 
simply the scalar product of the vectors representing the numbers ao 
and aT/2, (27) may be written in the form 

(28) | 0o | | ar/21 cos T <; - — (a - 7), 
27T 

where r is the angle between the two vectors. 
It is of interest to note that , while (2) reduces to an equality only 

in the degenerate case when the domain D coincides with D$, (3) 
and its equivalents (27) and (28) becomes equalities for a nonde-
generate class of domains. In particular, one can easily show, by 
actually computing s0 and s^, that the equality sign may be taken 
in (3), (27), and (28) if D is taken to be the exterior of any ellipse. 
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