A NOTE ON THE SCHMIDT-REMAK THEOREM

FRED KIOKEMEISTER

Let G be a group with operator domain Ω. We shall say that G satisfies the modified maximal condition for Ω-subgroups if the chain $H_{1} \subset H_{2} \subset \cdots \subset H \neq G$ is finite whenever H_{1}, H_{2}, \cdots, H are Ω-subgroups of G.

Let A_{1}, A_{2}, \cdots be a countable set of groups. The direct product of A_{1}, A_{2}, \cdots will be defined to be the set of elements (a_{1}, a_{2}, \cdots) where a_{i} is an element of A_{i} for $i=1,2, \cdots$, and where but a finite number of the a_{i} are not the identity elements of the groups in which they lie. A product in the group is defined by the usual componentwise composition of two elements. This group will have the symbol $A_{1} \times A_{2} \times$

The following theorem is in a sense a generalization of the SchmidtRemak theorem.

Theorem. Let G be a group with operator domain Ω, and let Ω contain the inner automorphisms of G. Let $G=A_{1} \times A_{2} \times \cdots$ where each of the Ω-subgroups A_{i} is directly indecomposable, and each satisfies the minimal condition and the modified maximal condition for Ω-subgroups. Then if $G=B_{1} \times B_{2} \times \cdots$ is a second direct product decomposition of G into indecomposable factors, the number of factors will be the same as the number of the A_{i}. Further the A_{i} may be so rearranged that $A_{i} \cong B_{i}$, and for any j

$$
G=B_{1} \times B_{2} \times \cdots \times B_{j} \times A_{j+1} \times A_{j+2} \times \cdots
$$

A proof of the theorem can be based on any standard proof of the Schmidt-Remak theorem such as that given by Jacobson ${ }^{1}$ or by Zassenhaus ${ }^{2}$ with but slight changes in the two fundamental lemmas.

We state the following lemmas for a group G with operator domain Ω, and we assume that for G and Ω :
(1) Ω contains all inner automorphisms of G.
(2) G satisfies the minimal condition and the modified maximal condition for Ω-subgroups.
(3) G is indecomposable into the direct product of Ω-subgroups.

[^0]Lemma 1. Let α be an Ω-operator of G. If there exists in G an element h not equal to the identity of G such that $h^{\alpha}=h$, then α is an automorphism of G.

This lemma follows by the usual arguments. It is only necessary to note that the fixed point h is sufficient to guarantee that the union of the kernels of the operators $\alpha, \alpha^{2}, \cdots$ is not G, and that the modified maximal condition then yields that this union is the kernel of some α^{k}.

Lemma 2. Let $\alpha_{1}, \alpha_{2}, \cdots$ be addible Ω-operators such that if g is an element of G, then there exists an integer $N(g)$ such that $g^{\alpha_{i}}=e$, the identity element of G, for all $i>N(g)$. If $\alpha=\alpha_{1}+\alpha_{2}+\cdots$ is an automorphism of G then, for some k, α_{k} is an automorphism of G.

Let g be an element of $G, g \neq e$. Let $\beta_{1}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{N}$, $\beta_{2}=\alpha_{N+1}+\alpha_{N+2}+\cdots$ where $N=N(g)$. Thus $\alpha=\beta_{1}+\beta_{2}$ and $g^{\beta_{2}}=e$. We may assume that α is the identity operator. Then $g=g^{\alpha}=g^{\beta_{1}} g^{\beta_{2}}$ $=g^{\beta_{1}}$. The group G and the operator β_{1} satisfy the conditions of Lemma 1, and β_{1} is an automorphism of G.

Similarly let $\gamma=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{N-1}$. Then $\beta_{1}=\gamma+\alpha_{N}$. We may assume that β_{1} is the identity operator. If α_{N} is not an automorphism of G, the kernel of α_{N} must contain an element $h \neq e$, since G satisfies the minimal condition. Again we may show that γ is an automorphism of G. A repetition of this argument establishes the lemma.

By reference to Lemma 2 the cited proofs of the Schmidt-Remak theorem can be made to yield the following: To each B_{i} there corresponds a group $A_{\alpha_{i}}$ where α_{i} is a positive integral subscript such that $\alpha_{i}=\alpha_{k}$ implies $i=k$ and $A_{\alpha_{i}}$ is operator isomorphic with B_{i} for all i. Further

$$
G=B_{1} \times B_{2} \times \cdots \times B_{j} \times A_{\beta_{1}} \times A_{\beta_{2}} \times \cdots
$$

where $\beta_{n} \neq \alpha_{i}$ for any n or i, and where the set of integers $\left\{\alpha_{1}, \alpha_{2}\right.$, $\left.\cdots, \alpha_{i}, \beta_{1}, \beta_{2}, \cdots\right\}$ is the set of all positive integers. Let A_{m} contain the element $g \neq e$. Then for some M, g is an element of the group $B_{1} \times B_{2} \times \cdots \times B_{M}$, and since

$$
\left(B_{1} \times B_{2} \times \cdots \times B_{M}\right) \cap\left(A_{\beta_{1}} \times A_{\beta_{2}} \times \cdots\right)=e
$$

$m \neq \beta_{k}$ for all k. Thus for some $i, 1 \leqq i \leqq M$, we have $m=\alpha_{i}$, and the set of integers $\left\{\alpha_{1}, \alpha_{2}, \cdots\right\}$ includes all subscripts. There then exists a reordering of these subscripts such that $\alpha_{i}=i$.

[^0]: Presented to the Society, April 27, 1946; received by the editors January 28, 1946, and, in revised form, March 19, 1947.
 ${ }^{1}$ Nathan Jacobson, The theory of rings, Mathematical Surveys, vol. 2, New York, 1943.
 ${ }^{2}$ H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig, 1937.

