A NOTE ON THE SCHMIDT-REMAK THEOREM

FRED KIOKEMEISTER

Let G be a group with operator domain Ω . We shall say that G satisfies the modified maximal condition for Ω -subgroups if the chain $H_1 \subset H_2 \subset \cdots \subset H \neq G$ is finite whenever H_1, H_2, \cdots, H are Ω -subgroups of G.

Let A_1, A_2, \cdots be a countable set of groups. The direct product of A_1, A_2, \cdots will be defined to be the set of elements (a_1, a_2, \cdots) where a_i is an element of A_i for $i=1, 2, \cdots$, and where but a finite number of the a_i are not the identity elements of the groups in which they lie. A product in the group is defined by the usual component-wise composition of two elements. This group will have the symbol $A_1 \times A_2 \times \cdots$.

The following theorem is in a sense a generalization of the Schmidt-Remak theorem.

THEOREM. Let G be a group with operator domain Ω , and let Ω contain the inner automorphisms of G. Let $G = A_1 \times A_2 \times \cdots$ where each of the Ω -subgroups A_i is directly indecomposable, and each satisfies the minimal condition and the modified maximal condition for Ω -subgroups. Then if $G = B_1 \times B_2 \times \cdots$ is a second direct product decomposition of G into indecomposable factors, the number of factors will be the same as the number of the A_i . Further the A_i may be so rearranged that $A_i \cong B_i$, and for any j

$$G = B_1 \times B_2 \times \cdots \times B_j \times A_{j+1} \times A_{j+2} \times \cdots$$

A proof of the theorem can be based on any standard proof of the Schmidt-Remak theorem such as that given by Jacobson¹ or by Zassenhaus² with but slight changes in the two fundamental lemmas.

We state the following lemmas for a group G with operator domain Ω , and we assume that for G and Ω :

(1) Ω contains all inner automorphisms of G.

(2) G satisfies the minimal condition and the modified maximal condition for Ω -subgroups.

(3) G is indecomposable into the direct product of Ω -subgroups.

Presented to the Society, April 27, 1946; received by the editors January 28, 1946, and, in revised form, March 19, 1947.

¹ Nathan Jacobson, *The theory of rings*, Mathematical Surveys, vol. 2, New York, 1943.

² H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig, 1937.

FRED KIOKEMEISTER

LEMMA 1. Let α be an Ω -operator of G. If there exists in G an element h not equal to the identity of G such that $h^{\alpha} = h$, then α is an automorphism of G.

This lemma follows by the usual arguments. It is only necessary to note that the fixed point h is sufficient to guarantee that the union of the kernels of the operators α , α^2 , \cdots is not G, and that the modified maximal condition then yields that this union is the kernel of some α^k .

LEMMA 2. Let $\alpha_1, \alpha_2, \cdots$ be addible Ω -operators such that if g is an element of G, then there exists an integer N(g) such that $g^{\alpha_i} = e$, the identity element of G, for all i > N(g). If $\alpha = \alpha_1 + \alpha_2 + \cdots$ is an automorphism of G then, for some k, α_k is an automorphism of G.

Let g be an element of G, $g \neq e$. Let $\beta_1 = \alpha_1 + \alpha_2 + \cdots + \alpha_N$, $\beta_2 = \alpha_{N+1} + \alpha_{N+2} + \cdots$ where N = N(g). Thus $\alpha = \beta_1 + \beta_2$ and $g^{\beta_2} = e$. We may assume that α is the identity operator. Then $g = g^{\alpha} = g^{\beta_1} g^{\beta_2} = g^{\beta_1}$. The group G and the operator β_1 satisfy the conditions of Lemma 1, and β_1 is an automorphism of G.

Similarly let $\gamma = \alpha_1 + \alpha_2 + \cdots + \alpha_{N-1}$. Then $\beta_1 = \gamma + \alpha_N$. We may assume that β_1 is the identity operator. If α_N is not an automorphism of G, the kernel of α_N must contain an element $h \neq e$, since G satisfies the minimal condition. Again we may show that γ is an automorphism of G. A repetition of this argument establishes the lemma.

By reference to Lemma 2 the cited proofs of the Schmidt-Remak theorem can be made to yield the following: To each B_i there corresponds a group A_{α_i} where α_i is a positive integral subscript such that $\alpha_i = \alpha_k$ implies i = k and A_{α_i} is operator isomorphic with B_i for all *i*. Further

$$G = B_1 \times B_2 \times \cdots \times B_j \times A_{\beta_1} \times A_{\beta_2} \times \cdots$$

where $\beta_n \neq \alpha_i$ for any *n* or *i*, and where the set of integers $\{\alpha_1, \alpha_2, \cdots, \alpha_i, \beta_1, \beta_2, \cdots\}$ is the set of all positive integers. Let A_m contain the element $g \neq e$. Then for some *M*, *g* is an element of the group $B_1 \times B_2 \times \cdots \times B_M$, and since

$$(B_1 \times B_2 \times \cdots \times B_M) \cap (A_{\beta_1} \times A_{\beta_2} \times \cdots) = e,$$

 $m \neq \beta_k$ for all k. Thus for some $i, 1 \leq i \leq M$, we have $m = \alpha_i$, and the set of integers $\{\alpha_1, \alpha_2, \cdots\}$ includes all subscripts. There then exists a reordering of these subscripts such that $\alpha_i = i$.

MOUNT HOLYOKE COLLEGE

958