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A network is a collection of conducting wires and batteries arbi
trarily interconnected. Kirchhoff [l , 6]1 gave a topological-type proof 
that the currents in the wires are uniquely determined for wires 
obeying Ohm's law. (Ohm's law is a linear law stating that current 
and potential drop are proportional.) If the wires obey a nonlinear 
law, more than one distribution of current is in general possible. 
For some engineering application a multiplicity of states is desirable 
as, for example, in counting circuits and oscillators. For other ap
plications it is essential that only one state be possible. It is seldom 
intuitively evident, however, whether or not a given nonlinear net
work will have multiple states. Hence, it appears that a qualitative 
mathematical treatment of nonlinear networks should be of some 
practical importance [S]. 

A large class of conductors used in engineering are such that the 
current through the conductor and the potential drop across the con
ductor are nondecreasing functions of one another. Such conductors 
we shall term quasi-linear. Examples are: selenium, copper oxide, 
silicon carbide (thyrite), and thermionic rectifiers [9]. The main 
result of this note is the proof that a network of quasi-linear conductors 
has a stable state of currents, and this state is unique. 

A stable state of currents in a network must satisfy Kirchhoff's 
laws, which simply are statements of the conservation of electricity 
and the single valuedness of the potential function. Maxwell [8] dis
covered two concise ways of expressing these laws : the junction equa
tions and the mesh equations. More or less as a digression we shall 
show that the mesh equations may be put in the same functional 
form as the junction equations if and only if the network is planar. 

The formulation of mechanical analogs to electric networks has re
ceived considerable attention in the literature because of the transfer 
of techniques suggested by the analogy. We discuss here a different 
type of analog which we call an elastic network. An elastic network is 
a collection of springs connected to each other at junction points. 
Forces are applied to the junction points to hold the network in a 
stretched condition. A tennis net is an example. Electric networks 
are analogous to one-dimensional elastic networks. Planar or spatial 
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elastic networks are more general than electric networks and may 
give rise to nonlinear problems even for springs obeying Hooked law. 

1. Maxwell's junction equations. In order to simplify notation and 
to avoid ambiguity the following trivial restrictions shall be imposed 
on the configuration of the networks considered. A proper network is 
a set of n + 1 junction points (0, 1, • • • , n), «§£l, connected by 
conducting wires such that each wire connects exactly two distinct 
junction points and no more than one wire directly connects the same 
two junction points. 

The conductivity function g(x) of a wire is the experimentally de
termined relation between the current w through the wire and the 
potential drop x across it, w=*g{x). If a wire obeys Ohm's law, 
g(x) =kx where k is a positive constant, the conductivity. 

The conductivity function of the wire connecting junction points i 
and j will be designated as gu(x) and is such that if w^ is the current 
flowing from i to j and i\- and Vj are the potentials of these junctions 
then 

(1) Wu = gifoi - Vi). 

By the conservation of electricity, wt-y= —«;#; so gij(x) = —gy*(—#). 
If there is no wire directly connecting i and j then gti(x)==0. 

Suppose currents Ui flow into the junction points from an external 
source. If a stable state of such a network exists, no electricity may 
pile up at a junction point so 

«0 = 0 + £0l(î>0 - Vi) + £02(tf0 ~ V%) + ' • • + g0n(V0 - Vn), 

//ix Ul = S 1 0 ^ 1 ~" V°) + ° + gl2(tfl ~ V2) + ' ' ' + gin (Vi - Vn), 

Un = gno(vn - Vo) + gnl(Vn - *l) + gn%(vn — V2) + ' ' ' + 0 . 

These are Maxwell's junction equations. Since gij(x)+gji(—x)^Q it 
follows that XXo^t^O, and so at least one of the equations is de-
dependent. Moreover, because the potentials Vi enter only as paired 
differences, one of them may be given an arbitrary value. 

If equations (2) are solvable for the potentials, then relations (1) 
determine the distribution of current in the wires when the currents 
entering the junction are given. 

I t should be noted that the definition given of the conductivity 
function is broad enough to allow batteries to be included in the 
network. Thus, if for one value of x the relation gij(x) = 0 holds, then 
—x may be regarded as the value of the potential jump of a battery 
inserted in the wire connecting points i and j . Thus, for an isolated 
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network excited by batteries equations (2) become 

n 

(3) 0 = X ga(Vi ~ vi)> i = 0, 1, • • • , n. 
ƒ.0 

In a non-proper network two or more wires may directly connect 
the same junction points. This case may be reduced to a proper net
work since the conductivity function for wires connected in parallel 
is the sum of the separate functions. The class of functions to be 
considered in what follows has the property that the sum of two func
tions also belongs to the class; hence, there is no essential restriction 
in considering only proper networks. 

2. Existence and uniqueness conditions. The junction equations 
will now be considered abstractly. However, all variables and con
stants shall be assumed real. 

THEOREM 1. Equations (3) have at least one solution in the variables 
Vi if: 

(a) gij(x)z2-gji(-x). 
(b) The functions gij(x) are continuous for all x. 
(c) For each pair (i,j) either ga(x) zzOor f%gij(i)dt-j>+ <*> as #—> ± oo. 

PROOF. We shall say that a set of functions {gij(x)}> 
i, i = 0, 1, • • • , n1 satisfies the chain condition if for each integer i 
there exists an ordered sequence of integers i, a, bf c} • • • , e, f (de
pendent on i) such that no function of the sequence gia, gab, gbc, 
' ' ' » gefy g/o vanishes indentically. First, suppose that the chain 

condition is satisfied and define Gij(x) —flgu(t)dt. Then by conditions 
(a) and (c) it is clear that there is an unbounded increasing function 
h(x) such that either Gij(x) = 0 or Gij(x) ^h(\ x\ ). It may be assumed, 
moreover, that h(x) is independent of i a n d j and that h(0) is negative. 

Let v0 = 0 and define \p(vu v2> • • • , vn) =]C?-o52?-oG;;(fl»--»y). Con
sider the value of \f/ on an w-dimensional cube whose corners are at 
the points ( + / , ±1, • • • , ±Z), l>0. For some value of i it fol
lows that Vi= ±1. Hence, (vi—va) + (Va--Vb)+ • • • + (»• —vf) + (vf—v0) 
~(vi—Vo)= ±L All integers of the chain sequence i, a, 6, • • • , ƒ , 0 
may be assumed distinct ; so there are at most n adjacent pairs. Thus, 
for some adjacent pair, say (d, e), it follows that \vd—ve\ ^l/n and 
Gde(vd—ve)^h(l/n). An estimate of \[/ may be made from this single 
term, $<£h(l/n) + (n + l)*h(0). For I sufficiently large this shows that 
\[/ is everywhere greater on the surface of the cube than it is at the 
center. In the interior, $ must have a minimum point and at this 
point 
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0 = 2~ld^/dvh = ]T) ghi(Vk ~ Vj), k = 1, 2, • • • , n. 

These are precisely equations (3) except for the equation & = 0, which 
is dependent on the others. 

If the chain condition is not satisfied, equations (3) are split into 
two sets. The first set includes the equation 0 and all equations i such 
that a nonvanishing chain gia, gab, • • • , gef, g/o does exist. If gix ap
pears in the first set as a nonvanishing function so also does gXi, be
cause the chain gXi, gto, gab> • • • , gef, g/o is nonvanishing. This shows 
that the equations and variables appearing in the first set have the 
same labels. The second set, being what is left over, also has the same 
labels on the equations and the variables appearing. Clearly both sets 
have the same form as equations (3) but are of lower dimension than 
n. This splitting process is repeated on the second set, and so on. 
Finally, there results a division into a number of mutually exclusive 
sets, and each set either satisfies the chain condition or vanishes 
identically. This completes the proof. 

In the network language the chain condition means that there is a 
chain of wires connecting every pair of junction points. In other 
words, the network is one piece. 

THEOREM 2. Equations (2) have a solution in the variables Vifor any 
choice of the constants Ui such that 52?-ow»,B=0 if: 

(a) gij(x) = -gji(-x). 
(b) The function gij(x) are continuous for all x. 
(c) For each pair (i, j) either g{j(x)^0 or gij(x)—>+ <*>(— <») as 

x—>+ oo(— oo). 
(d) The chain condition is satisfied. 

PROOF. Define x^i^toT.UGiAvi-v^iZto^i (t>0«0). Either 
Gij(x)z=0 or Gij(x)^h(\x\), where now h(x) is an increasing func
tion such that h(x)/x—>+ oo as x—»+ oo. Proceeding as in the proof 
of Theorem 1 gives the inequality 

n 

* i à h(l/n) + (n+ 1)*(0) - J ] E ) l « < | - * + °° a s / ~ > + oo. 

This shows that \pi has a minimum at a point inside a large cube; 
hence at this point 

n 

0 = l-^x/dVk = YJ ghi(*k ~ vj) - Uky k = 1, 2, • • • , n. 
2=0 

This completes the proof. 
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THEOREM 3. Equations (2) may not have more than one solution in the 
variables Vi, i = l, 2, • • • , n> with z>o = 0 if: 

(a) gijW^-gjii-x). 
(b) For each pair (i, j) either gij(x)*sO or gij(x) is an increasing 

function for all x. 
(c) The chain condition is satisfied. 

PROOF. Let Ui^YX-ogifoi-vj) and ul =Y%-0gij(vl -v}) then 
n 

]T) (Mi - u/)(vi - vl) 
»'-0 

n n 

= Z X) {«</(*< - Vf) - ft/(*/ ~ »ƒ)}(¥< ~ Vl) 

n n 

»-0 j*-0 

n n 

i-o y—o 

If #»• = # / , the left side vanishes. Each term of the last series on the 
right side is non-negative, because gij is a nondecreasing function; 
hence, 

{gii(Pi - v,) - ft,(*/ - vl)}{(vi - *,) - (*/ - vj)} = 0. 

Under the assumption that gt-/ is an increasing function, these factors 
must vanish together, so {(«>< —Vj) — (vl — u/)} = 0 . For a chain 
sequence, 

{(vi - O - (*ƒ - vi)} + {(va - vh) - W - „f)} + • • • 

+ {(*>ƒ- »o) - (z>/ - vi )} = s>» - vl. 

Because each expression in braces vanishes, Vi = vl, and the proof is 
completed. 

3. Maxwell's mesh equations. In actual engineering applications 
the junction equations are seldom employed but rather the alterna
tive method of the mesh equations is used. A direct proof of the 
equivalence of the two methods does not seem to be available in the 
literature (we shall not consider this question either). 

We now derive the mesh equations in the special case of an isolated 
network which can be diagramed in a plane without crossed wires. Let 



968 R. J. DUFFIN [October 

the regions (meshes) formed be numbered from 0 to m (including the 
exterior region). Let the resistance function be defined as the inverse 
of the conductivity function g(x), and let r%j{w) be the sum of the 
resistance functions of the wires common to region i and region j . 
Let Wi be a cyclic current flowing around region i. The sign of Wi 
is determined by a clockwise convention for the interior regions and 
by a counterclockwise convention for the exterior regions. The poten
tial is a single-valued function, so the net change in potential around 
the region i vanishes. Thus 

(4) 0 = X r<j(u>i — w*)t i = 0, 1, • • • , m. 

These are the mesh equations for a planar network. After the fic
titious currents Wi are found, the actual currents are given immedi
ately by the expressions Wi — Wj. Obviously, equations (4) are of the 
same form in the variables w{ as equations (3) are in the variables V{. 

It can be shown that any distribution of current which satisfies 
the conservation of electricity could be realized by assigning suitable 
values to a set of n of the cyclic currents wit Such a set is called a 
complete set [l , 6] . 

To write the mesh equations for a non-planar network, some com
plete set of cyclic currents is selected and a similar procedure is 
followed [3]. However, a theorem of MacLane [7] on "graphs" im
plies that some wire of a non-planar network must be traversed by at 
least three of the cyclic currents. This proves the following theorem. 

THEOREM 4. The mesh equations for an isolated network can be ex
pressed in the same form as the junction equations if and only if the 
network is planar. 

To form mesh equations for a non-isolated network, it is simply 
necessary to add fixed non-cyclic currents which enter at one junc
tion, follow some path, and leave at another junction. 

4. Elastic networks. A proper elastic network is a set of n+1 junc
tion points (0, 1, • • • , n), nèzl, connected by springs such that each 
spring connects exactly two distinct junction points and no more 
than one spring directly connects the same two junction points. The 
junction points are the end points of the springs. The force function 
f(x) of a spring is the force required to stretch a spring so that the 
distance between its end points is x. Let fij(x) =fji(x) be the force 
function of the spring connecting junction points i and j . If r* is 
the position vector of the ith junction point, the components of 
force which the junction i exerts on the spring (i, j) are 
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Wii = ƒ*ƒ( I n T * I ) 

wn = Ui(\ti -ti\ ) 

«£ƒ = /ii( | r< — r,-| ) 

It is convenient to express these relations in the single vector equa
tion Wij~gij(ri — rj)> where gij(r) is a vector function whose magni
tude is \fij(\ r\ ) | and whose direction in parallel to that of r. Clearly 
gij(r) = —gij(-r) if rj^O, and to have this relation hold for r = 0 it 
must be assumed that ƒ»•/(()) = 0 . 

If Ui is the total force applied to the ith junction from outside, 
the equations of equilibrium are 

n 

(5) Ui = J^Êufa - *v)» i = 0, 1, • • • , n. 

These are analogous to Maxwell's junction equations (2) but express 
the conservation of force rather than the conservation of electricity. 

We shall say that a spring is quasi-linear if its force function f(x) 
is a continuous, increasing, and unbounded function and if / ( 0 ) = 0 . 

THEOREM 5. If v of the functions (*>el) of a one piece network of 
quasi-linear springs are held fixed and given forces are applied to the 
other junctions then there is an equilibrium configuration, and this 
configuration is unique. 

PROOF. We may suppose that the junctions (0, 1, • • • , v — 1) are 
held fixed and that r0 = 0. Define Gij(x)—fSfn(t)dt and 

* = E ÈGitln - r,\ ) - ij^uiti. 

(Note that G,-/(#) is the potential energy of the spring.) Then \J/ is a 
function of 3(n—v + l) variables. As before, on a 3(n—v+^-dimen
sional cube of edge 2/, one of the variables takes the value ±1; for 
definiteness, suppose that it is the x coordinates of the radius vector 
Ti. Then, considering a chain sequence i, a, & , • • • , ƒ , 0, 

(Xi — Xa) + (Xa ~ Xb) + • • • + (X0 — Xf) + (xf — X0) = ± I 

For some adjacent pair, say (d, e), we have |r<* — re\ è \%d—xe\ *zl/n. 
Then, as before, it follows that xf/ is everywhere greater on a suffi
ciently large cube than it is at the center. Setting the partial dériva-
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tives of yp with respect to the coordinates equal to zero at a minimum 
point gives exactly equations (5) from v to n. This proves the exist
ence of a solution. 

As in the proof of Theorem 3, one obtains the identity 

£(u«-u/)-(r«-W) 

The expression on the left is clearly zero because either (ut — u') —o 
or (Ti—r')==o. Each term on the right is of the form {tf,-;(p) 
—êi}(p')\ • {p~p'}< a n d éij(p)=cp where c is a positive scalar, 
\p\c=fij(\p\)- Thus, 

U « ( P ) - êiiip')]{p-p'] = {cp-Cp>)-{p-p') 

= c\p\*-(c + c')p-p' + c'\p'\> 

(7) è C | p | 2 - ( C + c ' ) | p | | p ' | + C ' | p ' | 2 

= { C | p | - c ' | p ' | H | p | - | p ' | } 

- { / . • , ( | P | ) - / < / ( I P ' | ) H I P | - | P ' I U O . 

Thus, each term on the right side of equation (6) is non-nega
tive, and because the sum is zero each term must vanish. It fol
lows that relation (7) is actually an equality and that {A,( |p | ) 
- / , y ( | p , | ) } { | p | - | p 1 } = 0 . Thus, I P H P ' I if/<i(*)l*0. But the 
vectors p and p ' are parallel otherwise, pp'< \p\ | p ' | ; | p | s ^ 0 
and relation (7) could not be an equality; hence p—p' iifij(x)f^0. 

The remainder of the uniqueness proof parallels the proof of 
Theorem 3. Note that a similar theorem is valid for an electric net
work of quasi-linear conductors. 

The analogy between elastic and electric networks developed here 
suggests a method which, though somewhat abstract, is nevertheless 
quite practical. The idea is simply to set up the analog of Maxwell's 
mesh equations for elastic networks or even for more complicated 
problems in statics such as trusses. Without the analogy it would 
appear difficult to invent such a method, as the concept of using 
fictitious circulating forces in the meshes, for variables, is rather fan
tastic. 

The writer has built a mechanical model of a quasi-linear electric 
network (a wheatstone bridge circuit) by constraining the junctions 
of an elastic network to move along vertical rods. Hanging weights 
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on the junctions gives "applied currents." It is clear that, even with 
springs obeying Hooke's law, a nonlinear problem arises. 

The discrete boundary value problems discussed here suggest 
analogous considerations for continuous media. In a later note such 
nonlinear Dirichlet problems will be treated. 
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