ON A CON JECTURE OF CARMICHAEL

V. L. KLEE, JR. ${ }^{1}$

Carmichael [1] ${ }^{2}$ conjectured that for no integer n can the equation $\phi(x)=n$ (ϕ being Euler's totient) have exactly one solution. To support the conjecture, he showed that each n for which there is a unique solution must satisfy a restriction which implies $n>10^{37}$. In this note we prove the validity of restrictions considerably stronger than those of Carmichael, and raise the lower bound on n to 10^{400}.

We shall denote by X the set of all integers x for which $\phi(y)=\phi(x)$ implies $y=x$. (If the conjecture is correct, X is empty, and the theorems stated are vacuously satisfied.)
(1) Theorem. Suppose that $\bar{x}=\prod_{A} p_{i}^{a_{i}}$ is in X, where the p_{i} 's are distinct primes and A is the range of the index i. Let $m=\prod_{B} p_{i}^{a_{i}-1}\left(p_{i}-1\right)$

- Пcp $p_{i}^{c_{i}}$ where B and C are disjoint subsets of A (one of them may be empty) and $c_{i} \leqq a_{i}-1$ for i in C. Then if p is prime and $p-1=m$, we have $p \mid \bar{x}$.
 the definition of X.
(1.1) Corollary. Suppose, under the hypotheses of (1), that B has the following property: if q is prime and $q \mid\left(p_{j}-1\right)$ for some j in B, then $q \mid \bar{x}$. We must then have $p^{2} \mid \bar{x}$.

For under this condition we have $p-1=\prod_{D} p_{i}^{d_{i}}, D$ being a subset of A. So if $p \mid \bar{x}$ but $p^{2} \nmid \bar{x}$, then $\phi\left(\prod_{A-D} p_{i}^{a_{i}} \cdot \prod_{D} p_{i}^{a_{i}+d_{i}} / p\right)=\phi(\bar{x})$, contrary to the definition of X.
(1.2) Corollary. If, in the hypotheses of (1), B is empty, we have $p^{2} \mid \bar{x}$.
(1.3) Corollary. $4 \mid \bar{x}$. If f is a Fermat prime such that $f \mid \bar{x}$, then $f^{2} \mid \bar{x}$.
(1.2) and (1.3) are Carmichael's original conditions. From (1.1) and (1.3) it follows that \bar{x} is divisible by $3^{2}, 7^{2}, 43^{2}, 3^{3}$ or $13^{2}, \cdots$. (By extending this list Carmichael showed both \bar{x} and $\phi(\bar{x})$ to be greater than 10^{37}.)

[^0](2) Theorem. Suppose $u=2^{a}{ }_{s} \prod_{A} f_{i}^{a_{i}}$ is in X, where the f_{i} 's are distinct Fermat primes other than 3, and s is odd and divisible by no Fermat prime other than 3. Suppose that $C \subset A, 2 \leqq c \leqq a, v=2^{c} s \prod c f_{i}^{a_{i}}$. Then v is in X if and only if either $C=A$, or for each index i in $A-C$, $2^{c} \mid\left(f_{i}-1\right)$.

Clearly if v is in X, one of the stated conditions is valid. Now suppose that y is an even integer such that $\phi(y)=\phi(v)$, and let D denote the subset of $A-C$ consisting of all indices i in $A-C$ for which $f_{i} \mid y$. Let $d_{i}=a_{i}-1$ for i in $D, d_{i}=a_{i}$ for i in $(A-C)-D$, and $e=a-c+\sum_{D} k_{i} \quad$ (where $f_{i}=2^{k_{i}}+1$). Let $w=2^{e} y \prod_{A-c f_{i}^{d_{i}}}$. Then $\phi(w)=\phi(u)$. If one of the stated conditions holds, $y \neq v$ implies that either y is divisible by some prime q such that $q \nmid u$, or u is divisible by a non-Fermat prime p such that $p \nmid y$. In either case $w \neq u$, contradicting the hypothesis that u is in X. Hence we have $y=v$ and v is in X.
(2.1) Corollary. If u is in X, there is an element vof X such that (i) $v \mid u$; (ii) $8 \nmid v$, and v is divisible by no Fermat prime other than 3.

An element of X which satisfies condition (ii) of (2.1) will be called a reduced element of X, and the collection of all reduced elements will be denoted by $R(X)$. Clearly the structure of X is fairly well determined by that of $R(X)$, so henceforth we shall confine our attention to $R(X)$. If an element of X has no divisor in X, we shall call it irreducible, and shall denote the collection of all such elements by $I(X)$.
(3) Theorem. Let $\bar{x}=\prod_{B} p_{i}^{b_{i}}$ be in $R(X)$, where the p_{i} 's are distinct primes. For an integer m, let $B(m)$ denote the subset of B consisting of all indices i for which $m \mid\left(p_{i}-1\right)$. Let $w=\prod_{B-B(m)} p_{i}^{b_{i}}$. Then either w is in $R(X)$ or $m \mid \phi(w)$.

Suppose $w \notin R(X)$. Then $w \notin X$, and there is an integer $y \neq w$ such that $\phi(y)=\phi(w)$. And if $(y, \bar{x} / w)=1, \phi(y \bar{x} / w)=\phi(\bar{x})$, contradicting the fact that $\bar{x} \in X$. So for some i in $B(m)$, we have $p_{i} \mid y$, whence ($\left.p_{i}-1\right) \mid \phi(w)$. But $m \mid\left(p_{i}-1\right)$, so $m \mid \phi(w)$.
(3.1) Corollary. If, in (3), $\bar{x} \in I(X), m$ is prime, and $B(m)$ is not empty, then $m^{2} \mid \bar{x}$.

Since $B(m)$ is not empty, $w<\bar{x}$. But then, since $\bar{x} \in I(X), w \notin X$. Hence $m \mid \phi(w)$, whence from the definition of w it is clear that $m^{2} \mid \bar{x}$.
(3.2) Corollary. If $\bar{x} \in I(X), p$ is prime and $p \mid \bar{x}$, then $p^{2} \mid \bar{x}$.

This follows from (1.1).
(3.3) Corollary. If $\bar{x} \in I(X), \phi(\bar{x})$ is divisible by no Fermat prime other than 3.

This is an immediate consequence of (3.1). (3.1), (3.2), and (3.3) together eliminate $11,23,31,41,47, \cdots$ as possible divisors of \bar{x} or $\phi(\bar{x})$ if $\bar{x} \in I(X)$.

It would be of interest to know the relationship of $R(X)$ to $I(X)$, and of $I(X)$ to its smallest member.

We now apply (1.1) to show the following theorem.
(4) Theorem. If \bar{x} is in X, then both \bar{x} and $\phi(\bar{x})$ are greater than 10^{400}.

We know $3^{2} \mid \bar{x}$, and shall consider three possibilities: (I) $3^{3} \nmid \bar{x}$; (II) $3^{3} \mid \bar{x}$ but $\left.3^{4}\right\} \bar{x}$; (III) $3^{4} \mid \bar{x}$. Suppose that $\bar{x}=\prod p_{i}^{a_{i}}$, the p_{i} 's being distinct primes, and let $m=\prod p_{i}^{a_{i}-1}$. In each case 3,7 , and 43 are divisors of m.

In case (I) any prime of the form $6 k+1$ or $12 k+1$, where $k \mid m$ and ($6, k$) $=1$, must be a divisor of m. Applying (1.1), we find the following prime divisors: $13,79,157,547,1093,3319,3613,6163,6637$, 6709, 36979, 39829, 40507, 42667, 45949, 46957, 74419, 81013, 85333, 91813, 170509, 258847, 282253, 303493, 518083, 529933, 596779, 1041853, 1053157, 1573207, 1834639, 1854763, 1954869, 3623803, 3641917, 3669277, 3856147, 3944389, 6318943, 6772039, 6806893, 7161379, $7207243,7372093$.

In cases (II) and (III), m is divisible by each prime of the form $6 k+1$ or $18 k+1$, where k and m are as above. So in these cases m is divisible by $19,127,2287,4903,5419,13723,82339,98299,101347$, 304039, 617761, 688087, 1676827, 3736087, 4130323, 4324363, 4693267.

In case (II) we also have as divisors primes of the form $36 k+1$, and in case (III) of the form $54 k+1$. This fact gives rise to additional divisors as follows:

Case (II): 37, 223, 1549, 4219, 4663, 4789, 9547, 10837, 25309, 27883, 29527, 176509, 196597, 197359, 200467, 399643, 494029, 544123, 545947, 1059517, 1063159, 1088467, 1184149, 1198927, 1203019, 1235419, 1564309, 2397853, 2407141, 3265399, 3702367, 7082029, 7221439, 7274053, 7619263, 8262367, 8387839, 8647927, 9139519.

Case (III): 379, 6823, 15919, 40939, 43207, 123499, 130483, 143263, 202627, 264763, 302443, 368443, 741043, 859699, 1857859, 2018383, 2053423, 2333467, 4446759, 5030479, 5480287.

The stated divisors were found with the aid of [2]. It is easy to find still more divisors by this method. Those obtained imply the
following lower bounds for \bar{x} and $\phi(\bar{x})$: (I) 10^{458}; (II) 10^{586}; (III) 10^{400}.

References

1. R. D. Carmichael, Note on Euler's ϕ-function, Bull. Amer. Math. Soc. vol. 28 (1922) pp. 109-110.
2. D. N. Lehmer, List of prime numbers, Carnegie Institution Publication, no. 165.

University of Virginia

ON THE DARBOUX TANGENTS

V. G. GROVE

1. Introduction. In a recent paper [1] ${ }^{1}$ Abramescu gave a metrıcal characterization of the cubic curve obtained by equating to zero the terms of the expansion of a surface S at an ordinary point O_{1}, up to and including the terms of the third order. This cubic curve is rational and its inflexions lie on the three tangents of Darboux through O_{1}. In this paper we give a projective characterization of such a curve, and hence a new derivation of the tangents of Darboux. By using the method employed in this characterization to the curve of intersection of the tangent plane of the surface at O_{1} with S, a simple characterization of the second edge of Green is found. Another application exhibits the correspondence of Moutard. Finally a new interpretation of the reciprocal of the projective normal is given in terms of the conditions of apolarity of a cubic form to a quartic form. The canonical tangent appears in a similar fashion.

Let S be referred to its asymptotic curves, and let the coordinates ($x^{1}, x^{2}, x^{3}, x^{4}$) of the generic point O_{1} of S be normalized so that they satisfy the system [2] of differential equations

$$
\begin{align*}
x_{u u} & =\theta_{u} x_{u}+\beta x_{v}+p x, \tag{1.1}\\
x_{v v} & =\gamma x_{u}+\theta_{v} x_{v}+q x, \quad \theta=\log R .
\end{align*}
$$

The line l_{1} joining O_{1} to O_{4}, whose coordinates are $x_{u v}^{i}$, is the R-conjugate line, and the line l_{2} determined by O_{2}, O_{3}, whose respective coordinates are x_{u}^{i}, x_{v}^{i}, is the R-harmonic line.

If we define the local coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with respect to

[^1]
[^0]: Presented to the Society, October 25, 1947; received by the editors December 12, 1946, and, in revised form, April 5, 1947.
 ${ }^{1}$ I should like to thank Professor C. G. Jaeger of Pomona College for arousing my interest in Euler's ϕ-function.
 ${ }^{2}$ Numbers in brackets refer to the references at the end of the paper.

[^1]: Presented to the Society, April 26, 1947; received by the editors April 11, 1947.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

