
SOME LIMIT THEOREMS 

I. M. SHEFFER 

1. Introduction. I t is a classical result in the theory of trigonometric 
series that if 

(1.1) cn cos nx + dn sin nx —•> 0 (^ - * <*> ) 

/or a// (rea/) x on a set of positive measure, then 

(1.2) £n->0, <Zn->0. 

Cantor proved this for the case that set {x} is an interval, and 
Lebesgue established the result for a set of measure zero. A short 
proof is given by Hardy and Rogosinski.1 

The following related result was proved and used by Szâsz.2 If 

(1.3) an sin nx + bn sin (n + l)x —»0 

on a (real) set {x} of positive measure, then 

(1.4) <*»-><>, &n->0. 

Relations (1.1) and (1.3) can be put into complex form. For ex
ample, (1.1) becomes 

(1.5) an exp {nx} + bn exp { — nx} —»0, 

with the conclusion that 

(1.6) an-^0, bn-+0. 

Here exp {u} is defined by 

(1.7) exp {u} =eiu (i = ( -1) 1 / 2 ) . 

Our purpose in the present work is to extend the conclusions of the 
above-mentioned results to combinations more general than (1.3), 
(1.5). Thus in §2 we go from two terms to k terms and generalize the 
exponents; in §3 the coefficients of the exponentials are permitted 

Presented to the Society, April 26, 1947 under the title A limit theorem; received 
by the editors May 12, 1947. 

1 Hardy and Rogosinski, Fourier series (Cambridge Tracts in Mathematics and 
Mathematical Physics, no. 38), Theorem 92, p. 84. 

2 Otto Szâsz, On Lebesgue summability and its generalization to integrals, Amer. J. 
Math. vol. 67 (1945) pp. 389-396, especially Lemma 2, p. 395. Dr. Szâsz has informed 
me that, with the intention of using it in work on trigonometric series, he has proved 
(but not published) a generalization of (1.3), namely where the left side of (1.3) is 
replaced by the expression X^..» a8e

iax. 

219 



220 I. M. SHEFFER [February 

to be polynomials; and in §4 the multi-dimensional case is taken up. 

2. One-dimensional case. In the following sections we suppose 
without further mention that all variables x, y, • • • are real. 

LEMMA 2.1. Let {un\ be a real sequence that does not have zero as its 
limit. The relation 

(2.1) lim exp {unx} = 1 

cannot hold on a set of positive measure.* 

Suppose the lemma is false, so that there is a set J of positive meas
ure on which (2.1) is satisfied. We may suppose that J Is bounded. I t 
is no restriction to assume that zero is not a limit point of {u»] ; for 
there exists an infinite subsequence of {un\ for which zero is not a 
limit point, and we may remove all #n 's not in this subsequence. 

Suppose {un} contains a bounded subsequence {wn;.}; then from 
{un.} a further sequence can be chosen for which a limit exists. This 
limit, say L, cannot be zero, so from exp [Lx\ = 1 for x in J we con
clude that J is at most a denumerable set, contrary to the assumption 
that J is of positive measure. 

Now suppose that {un} contains no bounded subsequence, so that 
| un\ - * 0 0 . By Egoroff's theorem there is a subset Ji of 7, of positive 
measure, on which (2.1), tha t is, 

cos unx + i sin unx —» 1, 

holds uniformly. Consequently, since 1 + cos unx is uniformly 
bounded, 

cos2 unx — 1 —> 0 (uniformly on Ji). 

Integrating over Ji : 

(2.2) I cos2 unxdx—"> I dx = tniji). 
Jji Jji 

Now there exists an open set ££, consisting of a finite number of 
nonoverlapping intervals, say (ay, ôy),i = l, • • • , p, with the follow
ing two properties: (i) ^ c o n t a i n s Ji; (ii) m(Ji) ^tn(§0 <3m(Ji)/2. 
Hence, 

8 As originally stated and proved, this and the other results of the paper used the 
condition interval everywhere in place of set of positive measure. We owe to Dr. Szâsz 
the suggestion to generalize to the case of positive measure, and also to extend the 
results to more than one variable (see §4). 
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/
cos2 unxdx ^ I cos2 unxdx = 2-1 I (1 + cos 2unx)dx 

* Tsin 2«naf]8* 
= 2-%(̂ ) + 2^i: — — ; 

,-1 L *Un Jaj 
so for all n sufficiently large, 

f 3 

(2.3) I cos2 unxdx < —tn(Ji). 
JJi 4 

But this contradicts (2.2), so the lemma cannot be false.4 

LEMMA 2.2. Let {t8,n}, s = l, • • • , k, be real sequences with the prop
erty that none of the sequences {t8tn}, {/«,» — tp,n} (s^p) has zero as a 
limit point. If real or complex constants {A8,n\ exist such that 

h 

(2.4) 2>«,»[exp {t8tnX} - l ] - * 0 

for all x on a set £ of positive measure, then 

(2.5) i4.,»->0 ( ^ = 1 , . . . , * ) . 

If k = l the lemma is true in virtue of Lemma 2.1. Assume it true 
for the case k — 1 ; we shall then prove it for k by an induction argu
ment, and this will establish the truth of Lemma 2.2. 

I t is no restriction to suppose that £ is a bounded set. £ contains a 
point Xi with the property that every interval containing x\ in its 
interior meets £ in a set of positive measure.6 For suppose not. Then 
about each x in £ exists an interval Ix, with x in its interior, such that 
£>IX is of measure zero. Let x\ be in £, and let IX1 be the largest asso
ciated interval. I t is clear that there is a largest interval. If #2 in £ 
is not in Ixv then it too has a largest associated interval Ixv and Ixv 

1*2 do not meet. I t is now a straightforward argument to show tha t £ 
is covered by at most a denumerable number of such intervals I*, 
thus establishing £ as a set of zero measure. This contradiction shows 
that a point such as the aforementioned X\ exists. 

Let x in (2.4) take on such a value x\ and subtract from (2.4). 
There results the relation 

4 This contradiction does not preclude the possibility that the set of points for 
which (2.1) holds is non-measurable, but in this case the set cannot contain a subset 
of positive measure. 

6 A much stronger conclusion as to the number of such points x\ is of course pos
sible, but we require only the above mild assertion. 
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(2.6) ]C-4s.»e xP {/8,nffi} [exp {t8,ny} ~ l ] - > 0 

for all y in £1 = {y = x — xi, as x ranges over £ } . £1 and £ have the 
same (positive) measure, and the replacement of (2.4) and £ by (2.6) 
and £1 insures that the origin (y = 0) is a point of £1 every neighbor
hood of which contains a subset of £1 of positive measure. 

Let 

(2.7) B8in = A8,n exp {t8,nxi}. 

Then 

k 

(2.8) T,B8>n[exp {t8,ny} - l ] - > 0 (;y in £1), 
s=l 

and (2.5) is equivalent to 

(2.9) Bs,n-+0 ( j - 1 , . . . , * ) . 

Suppose the lemma is false for case k. Then a value s, say 5 = *, 
exists such that6 B—>0 is false. There therefore is a subsequence 
{fij^n(j)} of {#}, and a number i t f>0, such that 

\Bk,nU)\ > M; 

so on replacing {n} by {w(j)} in (2.8) and dividing by Bk,n(j)> we 
have 

k-l 

(2.10) [exp {tk,nU)y} - 1] + 2C. fn(y)[exp {/.,«<ƒ)?} ~ l ] - > 0 
5=1 

(;y in £1). 
Here 

(2.11) C8,n(3) = ~T * 

Let yi be an arbitrary point of £3. The set of points \u) defined by 
u = y—yi as y ranges over Z\ will be denoted by £vv and will be 
termed a translation set (relative to £1). Clearly, tn(£>yi) = m(£i). 

Let §, be an open set containing £1, with m{ £1) <m(Si) <3m( £i) /2. 
There exists a set of nonoverlapping open intervals i£i = Ji + • • • +Ir 

contained in §,, for which 
6 Actually, for every 5 = 1, • • », k the quantity Bt,n does not approach zero; for 

otherwise we can drop from sum (2.8) all terms for which B8,n-+0, and thus reduce 
(2.8) to k — 1 or less terms, in which case the lemma is true by our induction assump
tion. 
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«f(fii) < » ( & ) < 3w(£i)/2, 

and also such that 

m(^vei)>3m(ei)/4. 

To each end of Ip (p = 1, • • • , r) add an interval of length A, forming 
a new interval Jp, where A is chosen small enough so that on setting 
0.2 = Ji+ • • • +Jq (cfè? since some intervals may overlap and thus 
be combined) then m ( ^ ) <3ra(£ i ) /2 . 

Let 3C be the subset of numbers y of £i for which \y\ <A. We 
know that 5C is of positive measure. Moreover, for an arbitrary y in 3C, 

m(Sh' £v) > 3w(£i)/4, m(£2- £i) > 3m(£i)/4. 

Since m(^,2) <3m(£i ) /2 , it follows that 

m(£i-£y) > 0 (all y in 3C). 

We see from (2.10) and Lemma 2.1 that we cannot have C,,»<y)—»0 
for all 5 = 1, • • • , k — l. Hence there is an s, say 5 = 1, for which 
Ci,n(i)—*0 is false; and a subsequence {m(j)} of {n(j)}, and a positive 
number K, such that 

(2.12) ICW, | >K. 

Now the relation 

(2.13) exp {(/i(„(,-) - /*,«(,•))«} -> 1 0 ' - » oo) 

cannot hold on a set of positive measure (Lemma 2.1) ; consequently, 
there is a point y\ in 3C such that (2.13) is false for 2 = 3/1. Choose 
y — yi in (2.10) and subtract from (2.10): 

exp {h,nU)yi} [exp {**,»<ƒ>«} - l ] 

(2.14) fc"*1 

+ E C M ( « exp {/.,»(/)yi} [exp {*.,»<,•)«} - l ] - > 0 , 
s= l 

where u = y—yi (y in £i), so that u ranges over the translation set 
£yv In (2.14), replace {n(j)} by {m(j)} and divide by exp {tk,m(j) yi}. 
This gives us 

[exp {h,ma)u} - 1] 
k-l 

(2.15) + ]£C.,m<y) exp {(/.,«,(ƒ> — h,ma))yi} [exp {*.,*<ƒ>«} — l ] - > 0 
*==i 

(u in £yi). 

Let c(^=£i-£ l /1. We know that rn(jQ>0. If we restrict w in (2.15) 
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and y in (2.10) to lie in «£, then u and y may be identified; so on sub
tracting (2.15) from (2.10) (with n(J) replaced by m(J)) we obtain 

(2.16) ]£C, t l f l</)[l-exp {(t8,mU)-h,ma))yi}][exi? {fc,m</>y}—1]-*0 

(yinO-
This relation has only k — 1 terms, and for it the hypotheses of Lemma 
2.2 hold. By our induction assumption, therefore, each coefficient 
approaches zero. Since (2.12) holds, we must have 

exp {(h.mU) ~ h,mU))yi} -* !i 

which is contrary to the choice of y\. 
Thus the induction chain is complete, and the lemma is established. 

THEOREM 2.1. Let {#«,„}, 5 = 1, • • • , ife, be real or complex number 
sequencesy and let the real sequences {r8,n} have the property that none of 
the sequences {r«,n —rPtn)(s9*p) has zero as a limit point. If 

k 

(2.17) Z)tf«.nexp \r8,nx) - » 0 

for all x on a set 6 of positive measure, then 

(2.18) a8,n-+0 ( 5 = 1, • • • , *). 

REMARK. For sequences {r8,n} satisfying the above hypothesis, 
Theorem 2.1 asserts what may be termed the asymptotic linear inde
pendence of the functions exp {r«,n#}, 5 = 1, • • • , k. 

If the theorem is false, there is an index 5, say 5 = 1, for which 
0i,n—*0 is false; so a subsequence {n(J)} of {n} exists, and a positive 
number AT, such that |ai,n<i)| >M. Replace {n} by {#(/)} 'm (2*17) 
and divide by #i,no) exp {ri ,»(/>#} : 

k 

(2.19) 1 + Y^bs,nU) exp {(r8,nu) — 'i.n</))*} ->0 , 

where 

(2.20) j . i M / ) « f i ^ f l . 

Take x = #i in (2.19) and subtract from (2.19) : 

(2.21) YJ b8,nu) exp {/.,n</)*i} [exp {/.,»</>?} - l ] - » 0 . 
«»2 
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Here 

ta.nU) =* r*,nU) — fl.n(/)î V = X — X\ (x in 6), 

so y ranges over a set 61 of positive measure. 
The hypotheses of Lemma 2.2 are satisfied, so 

*«.n<j) —»0 (s = 2, • • • , k). 

But this contradicts (2.19). Thus Theorem 2.1 is established. 

COROLLARY 2.1. Let the sequences {t8tTl} satisfy the hypothesis of 
Lemma 2.2. If a constant A and constants {a8,n} exist such that 

k 
(2.22) ^2 a*.n exp {t8,nx} —>A 

«-=i 

for all x on a set of positive measure, then 

(2.23) A = 0; a*,n->0 (s = 1, • • • , *). 

For, (2.22) can be written 

k+i 
(2.24) X) a*,n exp {t8tnx} -> 0, 

«~i 

where 

(2.25) 0fc+l,n = ~ Ay tk+ltn == 0. 

The hypothesis of Theorem 2.1 is fulfilled in (2.24), so a8,n—>0, 
5 = 1, - • • ,fc + l . 

In Theorem 2.1 the condition on the sequences {r8%n\ cannot be 
weakened. This is shown by the following theorem. 

THEOREM 2.2. Let the real sequences {r8,w}, 5 = 1, • • • , k, be such 
that at least one of the sequences {r8tn — rp>n} (s?£p) has zero as a limit 
point. There exist sequences {a8,n}, at least one of which does not ap
proach zero y such that (2.17) holds for all x. 

We may suppose that /noo^fi.nci)—f2,n(i)—>0 as j—><*>. Choose 
#*,n = 0, s = 3, • • • , k, and ai,n = #2,n = 0 for n^ni, n2, • • • • The left 
side of (2.17) becomes 

(2.26) 0i.n</> exp {rltnU)x} + a2inu) exp {r2,nu)x}, 

and this approaches zero if and only if 

(2.27) ai,nU) exp {tnU)x) + aj,»</>-+0. 

I t is clear that if we define ai,n(/) = l, Ö 2 , W O ) = — 1 , then (2.27) 
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does hold for every x. Actually, these coefficients can be chosen to be 
unbounded. For let R>0 be given. There exists an M*=M(R) such 
that 

| exp {*„<ƒ>*} - l | g M I tnu)\ 

for all |* | = # . On writing the left side of (2.27) as 

01,n( / ) [exp {tnU)X) ~ l ] + [ai.nU) + a2,nU)]> 

we see that (2.27) follows if we choose ai,no), (hMj) s o tha t 

(2.28) öi,W(/)/W(,') —> 0, #l,n(;) H" #2,n(?) ~* 0. 

Since £n<i)--*0, conditions (2.28) can be satisfied by sequences ai,n(i), 
#2,nO) that are unbounded. 

3. Polynomial coefficients. The result of Theorem 2.1 can be ex
tended to the case of polynomial coefficients of bounded degree: 

THEOREM 3.1. Let {r8in\, 5 = 1, • • • , k, be real sequences such that 
none of the sequences {r8tn — rPtn] (s5*p) has zero as a limit point. Let 
{P8,n(x)} be real or complex polynomial sequences: 

( 3 . 1 ) Petn{%) = as>0,n + 0«.l.n* + * ' ' + fl.*,.»** (s = 1, • • • , *) 

in which q8 is independent of n. If 

h 

(3.2) ]CiYn(aO exp \r8>nx) - > 0 

for all x on a set £ of positive measure, then 

(3.3) a8tPtn-+0 (p = 0, 1, • • • , q8; s = 1, • • • , k). 

Let 

(3.4) q = max {qh • • • , qk}. 

If g = 0 the result follows from Theorem 2.1. Suppose the theorem is 
false. Then there is an integer Q>0 such that whenever q<Q the 
result is true, but for at least one case with q = Q the theorem is un
true. In each case of failure, with g = (?, at least one polynomial co
efficient is of degree Q. Let X be the number of such polynomials; 
then there is a positive integer A with the property that whenever 
X<A (and # = ()), the theorem is true, but there is a case X=A, 
q = Q for which it is false. 

Let (3.2) be such a case, so that exactly A polynomials, that we may 
take to be P9,n(x), s = 1, • • • , A, are of degree Q while all other poly
nomial coefficients (if any) are of lower degree. Since the theorem is 
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false for this case, not all the coefficients approach zero as w—»<*>. 
For each n = 1, 2, • • - let 

(3.5) jun = max { | a8tP,n\ } (p = 0, 1, • • • , q8; s = 1, • • • , k). 

Then fxn does not approach 0. There therefore exist values s = a,p—pa, 
a positive number M, and a subsequence {n{j)\ of {n}, such that 

(3.6) | «,,„„,»<ƒ) | = /*»</> > M (j = 1, 2, • • • ). 

Replace {n} by {n(j)} in (3.2) and divide by aff,Pff,nU) exp {r\,nu)x): 

(3.7) J2i.n(/)(») + Z) ^.n(j)(*) exp {*,,»<,-)*} -* 0 (x in 6), 
a=*2 

where 

and 

«• 1 
Rstna)(%) = 2 b8,p,nU)%P = P 8 , n ( j ) ( # ) . 

The ^-coefficients are bounded, and &<r,r<r,n(;) = 1 for all j . Consequently, 
there exists a subsequence {w(j)} of {w(i)} for which the following 
limits exist : 

(3.8) Km b8tP,mU) = b8tP (p = 0, 1, • • • , q8; s = 1, • • • , k); 

and not all of b8tP are zero, since bfftPff=l. 
From (3.7) it follows that 

k 

(3.9) Ri(x) + X) *•(*) exp {/, mu)%} —>0 (# in 6) , 

where 

(3.10) R8(x) = £ b9lPx* (s = 1, • • • , k). 

Moreover, R\{x) is of degree Q\ for if it is of lower degree, then (3.9) 
presents a case in which fewer than A polynomials are of degeee Q, 
so from the definition of A it will follow that the theorem is true for 
(3.9). Thus all coefficients in all the polynomials approach zero as 
j—•> oo. But this is contrary to the fact that ba,P9 = 1. Hence the degree 
of R\(x) must be Q. 

We know from the proof of Lemma 2.2 that set £ contains a point 
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Xi every neighborhood of which contains a subset of £ of positive 
measure; and using this fact, we may conclude (as was similarly 
argued in establishing Lemma 2.2) that there exist distinct numbers 
&i, A2 such that on defining £1, £2 by 

£p == {yp = x + hp, x ranging over £} (p = 1, 2), 

then £3 = £ r £ 2 is a set of positive measure. 
Relation (3.9) may then be written in each of the forms 

Ri(yP — hp) 
k 

(3.11) + ]£•£•(?„ — hp) exp { - fc,m(/)*p} exp {*..«(/)?*} —>0 

(y„ in 6P , p = 1, 2). 

If we consider only points in £*, then yi and y2 may be identified: 

*i(y - A,) 

(3.12) + X] R8(y — Ap) exp { — t8tma)hp} exp {*.,«</)y} ~>0 

(y in £3, £ = 1, 2). 

On subtracting we have 

k 

a 1 ^ [Rl(y ~~ Â1) " X l ^ - **)! + X) [&(y - AS)
 e x P { - *..•»(ƒ)*i} 

— J?8(y ~ A2) exp {— ta,mu)h%} ] exp {/.,»(/)y} —>0 

(y m £3). 

Since i£i(#) is of actual degree (?, and (?>0, we see that 

(3.14) H(y) m [Rx(y - *0 - ^ ( y - A,)] 

is a polynomial of degree exactly Q — 1, and is therefore not identically 
zero. But H(y) being of degree less than Ç, this places (3.13) in the 
category of cases for which the theorem is true, since now fewer than 
A polynomials are of degree Q. Hence all coefficients approach zero. 
This is however contrary to the condition that H(y)^0. 

We have thus arrived at a contradiction, so the assumption that 
Theorem 3.1 is false is untenable. 

4. Higher dimensions. We shall now show that the foregoing re
sults extend to the general case of p dimensions. Throughout this 
section the term measure refers to p-dimensional measure. Proofs for 
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the general case usually follow those of the preceding sections, and 
are accordingly given briefly or not at all. 

LEMMA 4.1. Let {w,,n}, 5 = 1, • • • , p, be real sequences such that for 
at least one value of s, {u8,n} does not have zero as its limit. The relation 

(4.1) lim exp < ^ u8tnx8> = 1 
n-+oo I 8 „i ) 

cannot hold on a set of points (x) = (xi, • • • , xv) of positive measure. 

Assume that the lemma is false, so there is a set J of positive meas
ure for which (4.1) holds. Suppose s = q is the value for which uq,n does 
not approach 0. We may then assume that {wff,w} does not have zero 
as limit point. If a subsequence {n(J)} of [n\ exists for which all the 
sequences {w,,w0)}, 5 = 1, • • • , p, are bounded, then there will be a 
further subsequence {m(J)} for which the following limits exist: 

lim u8,mU) = l8 (s = 1, • * • , p)y 
j—»oo 

with Zfl5^0. Hence if (x) is in J, then (x) must satisfy one of the 
equations 

(4.2) — Z ^ = 0, ± 1 , ± 2, . . . . 
27T,„i 

For each choice of the right side, (4.2) is a hyperplane, and is of 
measure zero. The totality of planes (4.2) is likewise of zero measure, 
and so, therefore, is J, which is contrary to assumption. 

There remains to consider the case where for at least one value of s, 
say 5 = 1, and a subsequence {n(j)}, 

| Ui,nU)\-> oo. 

The remainder of the argument now follows that of Lemma 2.1, with 
obvious ^-dimensional modifications. 

LEMMA 4.2. Let {t8,r,n}, 5 = 1, • • • , k; r = l, • • • , p be real se
quences with the following property: a value r = q exists such that none 
of the sequences {t8,q,n}, {t8,q,n — t<r,g,n] (sT^a) has zero as a limit 
point. If real or complex constants {A8,n\ exist such that 

(4.3) J^A8,n exp< Y^t8,rinxX - 1 ->0 

for all (x) = (xi, • • • , Xp) on a set £ of positive measure, then 
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(4.4) A9,n-*0 ( 5 = 1, • • • , *) . 

The proof is like that of Lemma 2.2 with simple modifications that 
need not be detailed here. 

Lemma 4.2 leads directly to the following theorem. 

THEOREM 4.1. Let {a8,n}, s = l, • • • , k, be real or complex sequences, 
and let the real sequences {q8lr,n\, s — \, • • • , k; r = l, • • • , p, be 
such that j'or some value r =co, none of the sequences {^.«.n —2«r,«,n} (s^a) 
has zero as a limit point. If 

(4.5) X) a*,n exp < ^qs,r,n%r> - » 0 
s=l V r=l J 

for all (x) = (x\, • • • , xp) on a set £ of positive measure, then 

(4.6) a8>n->0 (s = 1, • • • , k). 

The proof follows an earlier one (Theorem 2.1), as does the next 
result : 

COROLLARY 4.1. Let the sequences {t8,r,n} satisfy the hypothesis of 
Lemma 4.2. If a constant A and constants \a8tn} exist such that 

(4.7) ] £ a8,n exp < ] £ ^,r,nXr> ~* A 
s=l V r=l / 

for all (x) on a set of positive measure, then 

(4.8) , 4 = 0 ; a8,n-*0 (5 = 1 , . - . , * ) . 

Finally, we have 

THEOREM 4.2. Let {q8,r,n}, s — 1, • • • , k; r = 1, • • • , p, be real se
quences satisfying the hypothesis of Theorem 4.1. Let {P8,n(%i, • • • ,%p)} 
be real or complex polynomial sequences : 

68 hi h 
\J±. y) J^s,n\Xi, ' • • , Xp) == / J Q'8,n',hit''',hpXl ' * * %p 

h+ • • • +hp~0 

(S = 1, • • • , k), 

in which e8 is independent of n. If 

(4 .10) X) -P«,n(Sl, ' • • , %v) GXP < J2q8,r,n%r> - * 0 
«==1 I r=l ' 

for all (x) on a set £ of positive measure, then 
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(4.11) aatn.hlt...,hp->0 (0 ^ A i + • • • + K ^ e9; s = 1, • • • , k). 

Up to a point the proof is patterned after that of Theorem 3.1. When 
the equivalent of (3.13) is obtained, however, we can no longer assert 
that H(yu • • • , yp) is not identically zero simply from the fact that 
two distinct sets (A)i = (A«, • • • , &iP), (ft)2 = (^2i, • • • , fejp) exist such 
that 

f A m H(yi> • * • ' y * > s i ^ 1 ^ 1 ~ * u » " • » y * "• A i * ) 

(4.12) 
- # i ( ; y i - ^21, • • • , yP - *2p) . 

In fact, nonconstant polynomials in more than one variable exist that 
are "periodic." We avoid this difficulty by observing that for a fixed 
point (h)u the point (Â)2 can be chosen arbitrarily on a set of positive 
measure. Examination of the proof of Lemma 2.2 shows this. Now if 
a polynomial L(#i, • • • , xp) has the property that 

L{xi + ch • • • , xp + cp) s L(xi, • • • , * * ) 

for all sets (c) = (ci, • • • , cp) on a set of positive measure, then 
surely L=cons tan t . 

In our case, therefore, if H(yi, • • • , ^p) = 0 for all possible choices 
of (A)2, then i?i is a constant, contrary to the fact that its degree is 
Q>0 (cf. Theorem 3.1). The remainder of the proof offers no diffi
culty. 
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