ON THE SUM OF CUBES

E. ROSENTHALL

Large capital letters A, B, \cdots (without or with subscripts) will represent integers of the quadratic number field $R a(\rho)$ where $\rho=\left(-1+(-3)^{1 / 2}\right) / 2$. Small latin letters a, b, \cdots represent rational integers, and the conjugate of a number X is denoted by \bar{X}.

The object of this paper is to give a method for obtaining the complete rational integer solution for the diophantine equations of the form

$$
\begin{equation*}
\sum_{i=1}^{m} z_{i}^{3}=0, \quad m>3 . \tag{1}
\end{equation*}
$$

This equation with m even, $m=2 n$, can be written as $\sum_{i=1}^{n}\left(X_{i}\right.$ $\left.+\bar{X}_{i}\right) X_{i} \bar{X}_{i}=0$ where

$$
\begin{equation*}
X_{i}=z_{2 i-1}+\rho\left(z_{2 i-1}-z_{2 i}\right) \tag{2}
\end{equation*}
$$

and thus the problem of solving (1) in this case is reduced to that of finding all the integers x_{i}, X_{i} satisfying the equations

$$
\begin{align*}
& \sum_{i=1}^{n} x_{i} X_{i} \bar{X}_{i}=0 \tag{3}\\
& x_{i}=X_{i}+\bar{X}_{i} \quad(i=1,2, \cdots, n) \tag{4}
\end{align*}
$$

and (2). When m is odd, $m=2 n-1$, we solve the system (α) consisting of (3), $x_{n}=X_{n}=z_{2 n-1}$ and (2), (4) for $i=1,2, \cdots, n-1$.

The resolution of these two systems hinges on techniques developed by E . T. Bell [2], ${ }^{1}$ being equivalent to the resolution of a system of multiplicative equations and a system of linear homogeneous equations in $R a$ in which the number of unknowns always exceeds the number of equations.

In solving (1) the following equations appear:

$$
\begin{equation*}
x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=0 \tag{5}
\end{equation*}
$$

in which the $x_{i}, y_{i}(i=1,2, \cdots, n)$ are $2 n$ independent variables;

$$
\begin{equation*}
a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=0 \quad(i=1,2, \cdots, m \leqq n-1) \tag{6}
\end{equation*}
$$

in which the n independent variables x_{i} are to be solved in terms of the coefficients $a_{i j}$;

[^0]\[

$$
\begin{equation*}
A_{1} B_{1} C_{1}=\cdots=A_{n-1} B_{n-1} C_{n-1} \tag{7}
\end{equation*}
$$

\]

in $3(n-1)$ independent variables A_{i}, B_{i}, C_{i};

$$
\begin{equation*}
p_{1} A_{1} \bar{A}_{1}=p_{2} A_{2} \bar{A}_{2}=\cdots=p_{n} A_{n} \bar{A}_{n} \tag{8}
\end{equation*}
$$

in which the p_{i}, A_{i} are independent variables.
The solution [5, p. 20 (13)] of (5) is

$$
x_{i}=a a_{i}, \quad y_{i}=-\sum_{j=1}^{i-1} a_{j} b_{j, i}+\sum_{j=1}^{n-2} a_{i+j} b_{i, i+j}
$$

for $i=1,2, \cdots, n$ with the convention that a sum in which the lower limit exceeds the upper is vacuous. Note that there are $\left(n^{2}-n\right) / 2$ free parameters $b_{j, k}$ and $n+1$ free parameters a, a_{i}.

If the system (6) is of rank m then its complete solution [3] in determinantal form is written down as follows. Let e_{j} be the determinant obtained by deleting the j th column from the matrix of the coefficients of the system consisting of (6) and the equations

$$
c_{i 1} x_{1}+c_{i 2} x_{2}+\cdots+c_{i n} x_{n}=0 \quad(i=1,2, \cdots, n-m-1)
$$

in which the $c_{i j}$ are arbitrary rational integers. Then

$$
x_{i}=(-)^{i} t e_{j} / e \quad(j=1,2, \cdots, n)
$$

where t is an arbitrary integer and $e=\left(e_{1}, e_{2}, \cdots, e_{n}\right)$.
The system (7) is recursive and can be solved completely by the algorithm of reciprocal arrays [1] since the integers of $R a(\rho)$ form a principal ideal ring. System (7) is equivalent to the equations

$$
A_{i} B_{i} C_{i}=A_{n-1} B_{n-1} C_{n-1} \quad(i=1,2, \cdots, n-2)
$$

The solution of the typical equation is

$$
\begin{array}{rlr}
A_{i}=A_{i 1} B_{i 1} C_{i 1}, & A_{n-1}=A_{i 1} H_{i 1} F_{i 1}, \\
B_{i}=D_{i 1} E_{i 1} F_{i 1}, & B_{n-1}=D_{i 1} B_{i 1} J_{i 1}, \\
C_{i}=G_{i 1} H_{i 1} J_{i 1}, & C_{n-1}=G_{i 1} E_{i 1} C_{i 1} .
\end{array}
$$

Then the values of A_{n-1} are equated, also those of B_{n-1}, and those of C_{n-1}. The resulting three systems are each of the type (7) with $n-2$ in place of $n-1$. By repetitions of the process the solution of (7) involving $(n-1) \equiv 3^{n-1}$ free parameters $K_{1}, K_{2}, \cdots, K_{(n-1)}$ is obtained in the form

$$
\begin{gathered}
A_{i}=K_{1} \Phi_{i}\left(K_{4}, \cdots, K_{(n-1)}\right), \quad B_{i}=K_{2} \Psi_{i}\left(K_{4}, \cdots, K_{(n-1)}\right), \\
C_{i}=K_{3} \Theta_{i}\left(K_{4}, \cdots, K_{(n-1)}\right)
\end{gathered}
$$

where each of $\Phi_{i}, \Psi_{i}, \Theta_{i}$ is a monomial in $3^{n-2}-1$ of the parameters $K_{3}, K_{4}, \cdots, K_{(n-1)}$ each occurring only once in a particular $\Phi_{i}, \Psi_{i}, \Theta_{i}$ and

$$
\begin{aligned}
& K_{1} K_{2} K_{3} \Phi_{i}\left(K_{4}, \cdots, K_{(n-1)}\right) \Psi_{i}\left(K_{4}, \cdots, K_{(n-1)}\right) \Theta_{i}\left(K_{4}, \cdots, K_{(n-1)}\right) \\
&=K_{1} K_{2} \cdots K_{(n-1)}
\end{aligned}
$$

for $i=1,2, \cdots, n-1$.
The resolution of (8) is also recursive. This system is equivalent to the $n-1$ equations $p_{n} A_{n} \bar{A}_{n}=p_{i} A_{i} \bar{A}_{i}(i=1,2, \cdots, n-1)$. The solution [4, Theorem 1] of the typical equation is

$$
\begin{aligned}
p_{i} & =t_{i 1} V_{i 1} \bar{V}_{i 1}, & p_{n} & =t_{i 1} L_{i 1} \bar{L}_{i 1} \\
A_{i} & =S_{i 1} \bar{U}_{i 1} L_{i 1}, & A_{n} & =S_{i 1} U_{i 1} V_{i 1}
\end{aligned}
$$

Then the values of p_{n} are equated and also those of A_{n} which yield the two independent systems

$$
\begin{equation*}
t_{i 1} L_{i 1} \bar{L}_{i 1}=t_{n-1,1} L_{n-1,1} \bar{L}_{n-1,1} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{i 1} U_{i 1} V_{i 1}=S_{n-1,1} U_{n-1,1} V_{n-1,1} \tag{11}
\end{equation*}
$$

for $i=1,2, \cdots, n-2$.
System (10) is of the type (8) with $n-1$ in place of n; system (11) is of the type (7) and its solution is therefore

$$
\begin{gathered}
S_{i 1}=K_{1} \Phi_{i}\left(K_{4}, \cdots, K_{(n-1)}\right), \quad U_{i 1}=K_{2} \Psi_{i}\left(K_{4}, \cdots, K_{(n-1)}\right) \\
V_{i 1}=K_{3} \Theta_{i}\left(K_{1}, \cdots, K_{(n-1)}\right)
\end{gathered}
$$

for $i=1,2, \cdots, n-1$.
Hence all integral solutions of (8) are given by

$$
\begin{aligned}
A_{i} & =K_{1} \Phi_{i} \bar{K}_{2} \bar{\Psi}_{i} L_{i 1}, & A_{n} & =K_{1} \Phi_{i} K_{2} \Psi_{i} K_{3} \Theta_{i} \\
p_{i} & =t_{i 1} K_{3} \bar{K}_{3} \Theta_{i} \bar{\Theta}_{i}, & p_{n} & =t_{i 1} L_{i 1} \bar{L}_{i 1},
\end{aligned}
$$

with the condition (10).
The process just applied to (8) is now repeated on (10) which will yield parametric expressions for $t_{i 1}, L_{i 1}$ similar to those for p_{i}, A_{i} respectively subject to systems of the type (10) and (11) with $n-1$ replaced by $n-2$. We note that this process must finally yield the solutions in the form

$$
\begin{equation*}
A_{i}=K E_{i}, \quad p_{i}=d M_{i} \bar{M}_{i} \tag{12}
\end{equation*}
$$

where the E_{i} and also the M_{i} are products of integers of $R a(\rho)$; all the E_{i}, and also all the M_{i} are of course not independent but they
are each independent of K.
The resolution of (3) now follows. Applying (5) to (3) yields

$$
X_{i} \bar{X}_{i}=a a_{i}, \quad x_{i}=-\sum_{i=1}^{i-1} a_{j} b_{j, i}+\sum_{j=1}^{n-i} a_{i+j} b_{i, i+i}
$$

for $i=1,2, \cdots, n$.
Hence we must now solve the system of equations

$$
X_{i} \bar{X}_{i}=a a_{i} \quad(i=1,2, \cdots, n) .
$$

The solution of the typical equation is

$$
X_{i}=p_{i} A_{i} B_{i}, \quad a=p_{i} A_{i} \bar{A}_{i,}, \quad a_{i}=p_{i} B_{i} \bar{B}_{i}
$$

in free parameters p_{i}, A_{i}, B_{i}.
Equating the value of a yields the system (8) and hence by (12) $A_{i}=K E_{i}, p_{i}=d M_{i} \bar{M}_{i}$ and therefore the complete solution of (3) is given by

$$
\begin{equation*}
X_{i}=K R_{i}, \quad x_{i}=-\sum_{j=1}^{i-1} a_{j} b_{j, i}+\sum_{j=1}^{n-i} a_{i+j} b_{i, i+j} \tag{13}
\end{equation*}
$$

for $i=1,2, \cdots, n$ where

$$
\begin{equation*}
R_{i}=d M_{i} \bar{M}_{i} B_{i} E_{i}, \quad a_{i}=d M_{i} \bar{M}_{i} B_{i} \bar{B}_{i} . \tag{14}
\end{equation*}
$$

The resolution of (1) now follows. Put $K=k_{1}+\rho k_{2}, R_{i}=r_{i}+\rho s_{i}$; then $K R_{i}+\bar{K} \bar{R}_{i}=k_{1}\left(2 r_{i}-s_{i}\right)-k_{2}\left(r_{i}+s_{i}\right)$. Then all the X_{i}, x_{i} satisfying (3) and (4) simultaneously are given by (13) where values are assigned to the parameters which determine R_{i}, a_{i} in (14) and then the ($n^{2}-n+4$)/2 unknowns $k_{1}, k_{2}, b_{i j}$ are determined from the n linear homogeneous equations

$$
\begin{equation*}
k_{1}\left(2 r_{i}-s_{i}\right)-k_{2}\left(r_{i}+s_{i}\right)+\sum_{j=1}^{i-1} a_{i} b_{j, i}-\sum_{j=1}^{n-i} a_{i+j} b_{i, i+j}=0 \tag{15}
\end{equation*}
$$

for $i=1,2, \cdots, n$, a system of the type (6).
Substitute this value of X_{i} in (2). Equate real and imaginary parts and all the rational integer solutions of (1) with $m=2 n$ will be obtained.

To solve (1) when m is odd, $m=2 n-1$, we proceed much as above, replacing system (15) by system (α) which is equivalent to (13) and the equations

$$
k_{1}\left(2 r_{i}-s_{i}\right)-k_{2}\left(r_{i}+s_{i}\right)+\sum_{j=1}^{i-1} a_{j} b_{j, i}+\sum_{i=1}^{m-i} a_{i+j} b_{i, i+j}=0
$$

for $i=1,2, \cdots, n-1$,

$$
k_{1} r_{n}-k_{2} s_{n}+\sum_{j=1}^{n-1} a_{j} b_{j, n}=0, \quad k_{1} s_{n}+k_{2}\left(r_{n}-s_{n}\right)=0
$$

a linear homogeneous system of $n+1$ equations in $\left(n^{2}-n+4\right) / 2$ unknowns $k_{1}, k_{2}, b_{i j}$. The corresponding X_{i} given by (13) are substituted in (2) for $i=1,2, \cdots, n-1$ and we put $X_{n}=z_{2 n-1}$.

We conclude by exhibiting the complete solution of $\sum_{i=1}^{6} z_{i}^{3}=0$ in terms of integers of $R a(\rho)$.

The complete solution of $p_{1} A_{1} \bar{A}_{1}=p_{2} A_{2} \bar{A}_{2}=p_{3} A_{3} \bar{A}_{3}$ is given by (12) where

$$
\begin{aligned}
M_{1} & =G H J T, & M_{2} & =G F L N,
\end{aligned} r M_{3}=L P S T,
$$

and all the parameters are arbitrary. Hence from (14) we get the corresponding values of $a_{i}, R_{i}=r_{i}+\rho s_{i}$, where d, B_{i} are arbitrary. In this case (15) is a linear homogeneous system of 3 equations in 5 unknowns. To complete this linear system for resolution we adjoin the single equation

$$
m_{1} b_{23}+m_{2} b_{13}+m_{3} b_{12}+m_{4} k_{1}+m_{5} k_{2}=0
$$

with arbitrary coefficients m_{i}.
Hence with a_{i}, r_{i}, s_{i} as found above, (9) gives

$$
\begin{aligned}
& e k_{1}=t\left(a_{1} m_{1}-a_{2} m_{2}+a_{3} m_{3}\right)\left(a_{1}\left(r_{1}+s_{1}\right)+a_{2}\left(r_{2}+s_{2}\right)+a_{3}\left(r_{3}+s_{3}\right)\right) \\
& e k_{2}=t\left(a_{1} m_{1}-a_{2} m_{2}+a_{3} m_{3}\right)\left(a_{1}\left(2 r_{1}-s_{1}\right)+a_{2}\left(2 r_{2}-s_{2}\right)+a_{3}\left(2 r_{3}-s_{3}\right)\right) .
\end{aligned}
$$

Then from (2) and (13) for $i=1,2,3$

$$
z_{2 i-1}=k_{1} r_{i}-s_{i} k_{2}, \quad z_{2 i}=k_{1}\left(r_{i}-s_{i}\right)-k_{2} r_{i}
$$

References

1. E. T. Bell, Reciprocal arrays and diophantine analysis, Amer. J. Math. vol. 55 (1933) pp. 50-66.
2. -, Separable diophantine equations, Trans. Amer. Math. Soc. vol. 57 (1945) pp. 86-101.
3. L. W. Griffiths, A note on linear homogeneous diophantine equations, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 734-736.
4. E. Rosenthall, On some cubic diophantine equations, Amer. J. Math. vol. 65 (1943) pp. 663-672.
5. Th. Skolem, Diophantische Gleichungen, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 5, no. 4, 1938.

McGill University

[^0]: Presented to the Society, September 17, 1945; received by the editors June 23, 1947.
 ${ }^{1}$ Numbers in brackets refer to references cited at the end of the paper.

