
FABER POLYNOMIALS IN THE THEORY OF UNIVALENT 
FUNCTIONS 

MENAHEM SCHIFFER 

Introduction. The Faber polynomials play an important role in the 
theory of univalent functions. Grunsky [ l]1 succeeded in establishing 
a set of conditions for a given function which are necessary and in 
their totality sufficient for the uni valency of this function, and in 
these conditions the coefficients of the Faber polynomials play an 
important role. Schiffer [2] gave a differential equation for univalent 
functions solving certain extremum problems with respect to the co
efficients of such functions ; in this differential equation appears again 
a polynomial which is just the derivative of a Faber polynomial (cf. 
Schiffer [3]; see also Schaeffer-Spencer [4]). 

It seems, therefore, of interest to study these Faber polynomials 
more closely, in particular their dependence on the given function 
with respect to which they are defined, their variation with the latter 
and certain characteristic inequalities for them and their coefficients. 
This investigation is carried out in the present paper. In §1 we estab
lish a generating function for all Faber polynomials with respect to a 
given function. In §2 we establish variation formulas for the Faber 
polynomials and their coefficients. In §3 we solve certain extremum 
problems with respect to the coefficients of these polynomials and find 
again all the inequalities which have been established by Grunsky. 
In §4 we use our method in order to generalize our results and to find 
inequalities for the Faber polynomials themselves. 

1. Identities for Faber polynomials. Consider a function f(z) which 
has in the neighborhood of z = oo a development of the form : 

(1) f(z) = z + Co + ciz'1 + c2z~2 + • • • . 

Fm(t) is called the mth Faber polynomial with respect to ƒ(z) if it is 
a polynomial of degree mint and if we have at 2 = <» a development: 

(2) Fm[f(z)] - *~ + JCcwr" . 
71=1 

The existence and uniqueness of all Faber polynomials with respect 
to a given f(z) are easily shown by recursion. 
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We shall now construct a generating f unction for all Fm(t). For this 
purpose, we consider the function 

f* TU N 1 M~fW 
(3) U(z, w) = log 

z — w 
which is regular for z and w in the neighborhood of infinity. We choose 
the principal branch of the logarithm, such tha t if either z or w con
verge to infinity, U converges to zero, as follows immediately from 
(1). Hence, we have the following series development for the function 
U(z, w) of two complex variables: 

00 

(4) J7(z, w) = log \j{z) - f(w)] - log (z - w) « ] £ dmnZ-nw-". 
m,n—l 

If we construct next 

f(z) — t °° 1 
(5) l o g ^ - - £ - F . ( 0 « - « , 

Z m=l W 

where the development is valid again in a neighborhood of z = oo and 
the FTO(/) are polynomials of degree m, we find from (5) and (4) : 

- 2-) — ^ml/Cw)]*-*1 = log h log! 1 I 
/ i f X m«l W 2 — W \ Z / 

W 
00 1 / °° \ 

« - X) — ( ww - X) mdmnvrn )srm. 

A comparison of equal powers of z on both sides gives finally 
00 

(7) Fm[f(w)] = wm- Yimdmnur\ 
n»l 

This shows tha t the coefficients Fm(t) are in fact just the Faber poly
nomials defined above and tha t we possess in the left-hand side of 
(5) a generating function for them. 

Comparing (2) and (7), we conclude 
(8) cmn = — tndmn. 
Now we have, because of the symmetry of U(z, w) in z and w, 

(9) dmn = dnm 

whence 

(10) ncmn - mc«m 
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an identity previously proved by Grunsky [l] and Schur [S]. 
Differentiating (5) with respect to t, we obtain : 

(ID - ^ — = £ -*:»r--, 
f(z) — / w=i m 

a generating function for the derivatives of Faber's polynomials which 
will be of use later on. 

Numerous further relations might be obtained, as for example the 
following: Differentiating (11) with respect to t we find: 

\J\Z) ~~ *) m~l W m,n-l WW 

whence 

(13) ~F'k'(t) - S — FlC^FiCO. 
# m+n-k MM 

For our further developments, however, formulas (5), (10) and 
(11) will be sufficient. 

2. A variation formula for the Faber polynomials. Let us suppose 
now that the function f(z) is regular and univalent in a domain D of 
the s-plane which contains the point at infinity and is bounded by a 
finite number of proper continua. It will, therefore, map D con-
formally upon a domain A of the f-plane. If f o is an arbitrary point in 
the f-plane which does not belong to A and p any positive constant, 
there exist infinitely many functions which are univalent in A and 
have in the domain |£—fo| >4p a development of the form: 

ap2 bpz cpA 

(i4) , ( f ) - r + ——- + + , „ + •••> 
r - fo (r - fo)2 (f - ro)8 

where \a\ £42 , \b\ ^48 , \c\ ^44 , • • • (see Schiffer [2]). 
The function 

o 

(15) /*(*) - ,[ƒ(«)] - ƒ(,) + "P + • • • 
ƒ(«) - f o 

is again regular and univalent in the initial domain D and has still a 
development of the form (1) at infinity. It maps the domain D upon a 
new domain A* in the f-plane. If p is small enough, A* will be very 
near to A and we may conceive the mapping (14) as a small variation 
of this domain. Variations of the type (15) which transform a uni
valent function ƒ(z) into a function ƒ*(*;) of the same type are of great 
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value in solving extremum problems within the class of normalized 
univalent functions. 

Suppose now that to a given univalent function ƒ(z) the nth Faber 
polynomial Fn{t) has been determined. If we subject f(z) to a varia
tion (IS), how does the corresponding Faber polynomial change? In 
order to settle this question, we make use of the generating function 
(5). We have in view of (15) 

- JL —Fm(t)z-m = lOg 

(16) m~im 

ƒ(«) - * ap2 

= log + j — - ^ — — + O(P2), 

where o(p2) shall denote henceforth a term containing at least p8 as 
a factor. We transform (16) by making again use of identity (5) and 
applying (11): 

- £ — JC(O*-- = - Z — Fm(t)z-m 

. m=l 1ft m=l W 

L 2 A 1 K(0-K(fo) , /a. 

Comparison of equal powers of 2 on both sides gives, therefore, the 
following variation formula for Fm{t) : 

(18) F%) - F.(0 - «P* K ( < ) " f ( r 0 ) + o W 

Let us now consider the value Fm[f(w)] as a functional of f(z) for a 
fixed point wÇ.D. Its variation is given by: 

(19) F*m[f*(w)] - F I K * ) ] + * P 2 ^ ^ + O(P2), 

whence, in view of (18), 

(20) F*m[f\w)] - F . I / W ] + V - ~ ~ r + O(P2). 

Using the series development (2) for Fm\f(w)]9 an analogous repre
sentation for F%[f*(w)], and the identity (11) for the second right-
hand term, we obtain by comparison of the coefficients of z~~n on both 
sides: 
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(21) cL m cmn + af>*.—FUto)Fn(to) + O(P2). 

n 
This variation formula for the cmn exhibits, of course, again the sym
metry of the matric ncmn» 

Finally, let us differentiate (15) with respect to z; we obtain: 

09 r W _ r ( „ [ 1 - _ ^ _ ] + 0(p,. 
which may be written as a variation formula for log ƒ'(2) as follows: 

ap2 

(23) log ƒ'*(*) - log ƒ'(*) - jjrr—^: + o(P*)> 
(ƒ(*) - fo)2 

and which will be used in this form later on. By differentiating (20) 
with respect to w and applying (22) we get after elementary trans
formations: 

(24) P?[f(w)] - PLUM] + aP> K ^ " y + O(P>). 
(ƒ(») - fo)2 

This is a variation formula for the functional F£ [ƒ(«>) ] and is interest
ing in that it contains only the functional itself in addition to ƒ(w) 
and f 0. 

3. Application of the variation formulas in extremum problems. 
We use now the formula (21) in order to solve certain extremum 
problems with respect to the family $ of all functions (1) which 
are univalent in D. Let #s=(#i, x2, • • • , XN) denote a vector of N 
complex numbers, not all zero, and consider the quadratic form 

N 

(25) Q(x, x) = 23 ncmnxmxn. 
m,n=l 

For each given function ƒ(z) of the family $ this form has a well de
fined complex value. We ask now the following question: 

What is the maximum modulus of Q(x% x), if ƒ(2) is a function of 
the family <£, and for which functions / ( s ) £ $ is this maximum 
attained? 

It follows easily from the theory of normal families that this ques
tion is significant and that there exists at least one / ( s ) £ $ for which 
the maximum value is obtained. We may, therefore, restrict our
selves to the task of characterizing these extremal functions and 
computing the corresponding value of | Q(x, x) | . 
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Suppose that we know already an extremal function f(z) and the 
corresponding value of Q(x, x) *f(z) will map D conformally upon a 
domain A in the f-plane. Let f o be a point in this plane which does 
not belong to A and subject A to a variation (14) as described in §2. 
Under this variation A is transformed into a domain A* which is ob
tained from D by means of a mapping with a function ƒ* (2), given 
by (15). Since ƒ*(z) also belongs to the family $, its corresponding 
value IQ*(x, x)| cannot be larger than the maximal |Q(xt x)\. On 
the other hand, we may easily compute | (?*(#, x)\ by means of 
formula (21). We have, in view of this formula, 

(26) Q*(*, x) - Q{x, x) + aP*( £ «Xt to) ) + O(P2). 

The extremal property of | Q(x, x) | implies 

I o*(*. *) I - Q(*. *) + <*P2( E sX(ro)) + O(P* 
(27) ' * - " ' I — ~' ' 'r \ ;Ti — —) ' ^ !) 

£\Q(x,x)\, 

which is equivalent to 

(28) Re|ap20-i(*, *) ( E *X(fo)) + O(P 2 ) | â 0. 

This inequality has to be fulfilled for every function z/(f) as defined 
in (14). We now make use of the following lemma (Schiffer [2]): 

Let A be a domain in the f-plane whose complement consists of 
continua T9 0"=1, • • • , c) and (r(f)péO a function analytic in each 
of the I\ . Let, further, the inequality 

(29) Re{aPV(fo)}+o(p 2 )^0 

hold for every function (14), univalent in A. Then each T, is an an
alytic curve with the parametric representation f (s) and satisfying 
for properly chosen (real) parameter 5 the differential equation 

(30) f(*)MfW}-i-
Application of this lemma to the particular inequality (28) leads 

to the result: The extremal f unction ƒ (z) maps the domain D upon a 
domain A in the f-plane which is bounded by analytic slits J (s) each 
of which satisfies the differential equation 

(3i) rfrra*. *)-i( E «jCù-to])*-1. 
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We see now that our particular extremum problem leads to a dif
ferential equation (30) with a term <r(f) which is a complete square. 
Thus, this differential equation becomes immediately integrable in 
closed form. Among all extremum problems arising in the theory of 
univalent functions, the particular class of those problems with the 
above property plays an important role, since these problems permit 
a particularly easy solution. 

We conclude from (31) that the boundary curves I \ of A satisfy 
the requirement 

(32) Im | Q ( * , *)-*/«£) xJFm(£)\ « *„ 

f G I\; kp = constant; v = 1, 2, • • • , c. 

The function 

(320 S(z) - Q(x, x)-wj: XnFnlfiz)] 
m=l 

is regular in D, except for an iVth order pole at infinity and possesses 
constant imaginary parts on each boundary continuum of D. 

In order to exploit these conditions, we introduce the following 
class of functions with respect to D. We define associate pairs of 
functions Am(z) and Bm(z), having at 3= co the respective develop
ments 

00 

(33) Am(z) = s*» + £ <wr n , 
n=l 

(330 Bm(z) - f ) bmnz~« 
n - l 

which are regular in D except for the pole of Am(z) at infinity. On 
each boundary continuum of D we require: 

(34) Am(z) - Bm(z) + const. 

where the complex constant depends on m and the particular 
boundary continuum. The existence and uniqueness of these function-
pairs is easily proved (cf. Grunsky [l]). 

We construct now the function 

(35) T(z) - e(*, s ) - " 2 £ XmAm(z) + Q(xf %)~w £ *mBm(z). 
tn=l m—1 
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This function has a t s = 00 the same principal part as S(z) and, in 
view of the characteristic property (34) of Am(z) and Bm(z), it has 
on each boundary continuum of D a constant imaginary part. The 
function S(z) — T(z) is, therefore, regular throughout D and has on 
each boundary continuum a constant imaginary part. Hence, it 
follows by the usual considerations that this function is a constant, 
that is, 

e(*. *)-1/2£ xnfAfi*)] - ç(*. *)-l/2E u . w 
(36) - 1 ^ N 

Comparing in this equation the terms in z°, we find from (2), (33), 
and (33') at once that C = 0. Let us introduce the real parameter S 
by the definition 

(37) « a - s g n Q ( * ; * ) ; 

then (36) may be written in the form 

(36') E XmFm[f(*)] - E *M*) + e " £ *JBm(z). 
*»=1 «i=l m=X 

Let us now apply the formulas (2), (33), and (330; comparing the 
coefficients of z~n on both sides yields: 

N N 

\yO) / 1 XmCmn
 ==: f f \Xmdmn i* & XmOmn)» 

wi-«l m««l 

Multiply the wth equation with nxn and add all resulting equations 
for # = 1 till » = iV, We obtain: 

N N N 

(39) ] £ ncmnxmxn - S wamnffmtfw + *<a X nbmn$mxn) 
m,n—l m,n—l m,n—l 

whence: 

(39') 
N 

m,n—l 

N 

7 * flQ"mn%mXn 
mtn—l 

N 

m,n—l 

The last right-hand side term is non-negative, since it can be shown 
that (nbmn) is a positive-definite Hermitian matric; we mention here 
that (namn) is a symmetric matric (cf. Grunsky [ l ] ) . 

The significant feature of (390 is that the right-hand terms de
pend only upon D and not upon the mapping function/(s). The in-

file:///Xmdmn
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equality (39')> proved for the extremal function, holds, therefore, a 
fortiori for every other admissible function also. 

The form of (39) leads us to the following extremum problem: 
What is themaximum modulusof P(x,x) = Q(x,x) — ^m,n-inamnXmXnt 

iif(z) is a function of the family $? 
One sees easily that the above considerations have to be repeated 

and that the same sequence of formulas appears, except that instead 
of Q(x, x) we have always to introduce P(xt x). We obtain finally, by 
putting 

(40) e* = sgn P(x, x), 

the equation 
N N 

(41) X ) n(cmn — amn)%mXn = eiy ] £ nt>mn%mXn 

m.n—l w,n—l 

for the coefficients cmn belonging to the extremal function ƒ (3). Hence, 
we have in general: 

(42) 
mtn*B*l 

r5 / * WOmnXmXn* 

These are just Grunsky's inequalities, derived here by variational 
methods. We have obtained, moreover, the following equation for 
extremal functions: 

(420 E *mFm[f(z)] - ] £ XnAmiz) + 6* £ *mBm{z)> 
m«»l m«»l ro-*l 

which shows that f(z) is an algebraic function of the Am and Bm 

(m-1 , • • - , JV). 

4. Inequalities for the Faber polynomials. The extremum prob
lems of the last paragraph were so easily solved since they led to a 
variational differential equation with a complete square expression. 
It will, therefore, be useful to discuss other extremum problems of the 
same class. 

Consider, for example, the functional 
N N 

( 4 3 ) R(W, X) = ]T) nCmnXmXn + 2 £ %mFm[f(w)] - l o g / ' ( w ) , 
m,n—l m—1 

which depends upon the function ƒ(2), assumed to be of the class $, 
and upon a fixed point wÇJD. In view of (20), (21) and (23), we have 
for R(w, x) the following variation formula: 
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(44) E*(w, x) « R(w, x) + aÂ E **X(r<>) + TT7 - ) + o ^ -

We see that R(w, x) has a variation formula containing again a per
fect square term and we expect, therefore, that the connected ex-
tremum problem will permit an easy solution. Therefore, we propose 
the following problem : 

If ƒ (z) is an arbitrary function of the class 3>, what is the maximum 
modulus of R(w, x) and for which function f(z) is this extremum at
tained? 

Assuming that f(z) is the desired extremum function and that it 
maps the original domain D upon a domain A, we find, by reiterating 
literally the conclusions of the last paragraph, that A is bounded by 
analytic slits f(s), each of which satisfies the differential equation 

(45) R(w, x)-i.?(s)*\ £ XnfLüis)] + TTT-^—TT I - 1. 
12 

ƒ(«) - rw 
This equation may be integrated and yields 

(46) Im j* (w, x)-w [" £ XmFM) - log (f - ƒ(»))]}• = const, 

along each boundary continuum of A. The function 

(47) U{z) = R(w, x)-w \ £ XmFm[f(z)] - log (ƒ(«) - ƒ(»))] 
L m»l J 

is regular throughout D, except for an iVth order pole at infinity and 
a logarithmic pole at z — w. It has a constant imaginary part along 
each boundary continuum of D. 

In order to make use of this fact as in the last paragraph, we have 
to define another pair of functions. Let A(z, w) and B(zt w) be uni
valent functions of z in D which map it upon the whole f-plane, slit 
along circular arcs with center at the origin, and along straight seg
ments pointing to the origin respectively, and such that w££> cor
responds to the origin in the f-plane. We suppose at infinity the de
velopments: 

00 

(48) log A(z, w) = log (s — w) + X) an(w)z~n
t 

n - l 

oo 

(48') log J5(z, w) - log (z - w) + 2 fin(w)trn. 
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On each boundary continuum of Df log A will have constant real 
parts while log B will possess constant imaginary parts. The functions 

1 * 
(49) <l)(zf w) = — log [A(z, W)-B(Z, W)] = log (z — w) + ]T) an(w)z^n 

2 n-i 

and 

1 B(z% w) " 
(490 *(f, w) - - log - — • £ - E ». (»)r -

2 i4(z, W) n . i 
are, therefore, regular in D with the exception of the logarithmic 
poles at w and oo for </>(z, w). On each boundary continuum of Z>, we 
have obviously: 

(50) <f>(z, w) = ^(s, w) + const. 

where the constant depends on the particular boundary continuum 
and on w. 

There exist, of course, close relations between the functions <£, yp 
on the one hand, and the functions Am(z), Bm(z) on the other. In fact, 
let us consider the integral around the whole boundary C of D: 

1 r d 
(51) — (t ilw(*)0'(s, w)dz = Am(w) + mam(w) — wm; <t>' = — #. 

L'KXJ c ÜZ 

The above equation is an elementary consequence of Cauchy's 
residue theorem. On the other hand, we have in view of (34), (50) 
and the single-valuedness in D of all functions concerned : 

(52) 

— <p Am(z)4>'(z, w)dz = —-; (f> Bm(z) # ( s , w) 
TTlJ C I'KlJ C 

lirij c 

Again, we apply the residue theorem which shows that the above 
integral is zero, Bm and ^ being regular throughout D. Hence, we have 
proved: 

(52') Am(w) = — mam(w) + wm. 

Using (33) and (49), we find, for fixed w and z near infinity, the de
velopment 

oo 

(53) 4>(z, w) = log (z — w) — 2 nr1amnurnzrm. 
m,n«l 
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Since (namn) is a symmetric matric, we see that 0(s, w) —log (* —w) is 
a symmetric analytic function of z and w. 

Let us consider next the following consequence of the residue 
theorem : 

(54) —1 <h Am(z)\l/'(z, w)dz = mbm(w). 
2iriJ c 

In view of (34) and (50), we may write this integral also in the form: 

— <p Am(z)d$ » —; <b Bm(z) djT 
inj c licij c 

(55) 
- - J - X 

2viJ . 
Bm(z)<t>'(z, w)dz, 

c 

which gives, again because of the residue theorem, 

(56) mbm(w) - - Bm(w). 

Therefore, in view of (33') and (49') : 
00 1 00 1 

(57) ^(2, w) = — 23 — Imn1®-^-™ » — 2 J —nlm nûrnsrm . 

Using the Hermitian character of mbnm, we find finally: 

(57') iKs, w) - - £ — bnniJO-oz-™; 
m,n—l ^ 

(57) and (57') show that \j/ is analytic in 3 and w. 
Let us return now to the function U(z), defined in (47). We prove 

easily, as in the last paragraph, the identity: 

R(W, *)-"»[ i ; *.*.[ƒ(«)] - log (ƒ« - ƒ« ) ] 

(58) - *(», as)-»/» I" £ **i„(i) - *(«, w)~\ 

+ R(w, *)-»'*[ £ *mBm(z) - *(s, »)]• 

Putting again 

(58') e«' = sgn 22(w, x), 

we may write (58) in the form : 
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Z xJFm\f{*)] ~ log (ƒ(*) -ƒ(«-)) 

= £ *«4m(*) ~ #(*» w) + eiT\ ]£ **-Bm(«) - ^(s, w) . 

(59) 

Comparing the coefficients of z~n on both sides, we find in view of 
(2), (S), (33), (330, (49), (490, (520 and (56): 

N I 

] £ XmCmn H Fn[f(w)\ 

(«» -
N I f r N 1 -1 

= Z) xmamn H An(w) + eir\ ]£ ffmJwn H 5n(w) L 

Multiplying with nxn and summing up for l^n^N, we get: 

N N N 

+ Z *^« [ƒ(»)] = E 
(61) 

N r N N —— n 
+ S ^ » ( w ) ^ + eir\ X ) nbmn&mXn + £ ^m(w) *m | . 

w»«-l L m,n»l w » l «J 

On the other hand, we obtain from (59) in the limit z—>w: 

N N 

]C XmFm[f(w)] - log f'(w) = £ xmAm(w) - %(w) 

(62) 

+ eiT\ £ *-Ai(w) - iKw, w) L 

where x(w) =3lim2H>w [0(2, w)— log (* —w)]. Adding together (61) 
and (62) yields: 

N N 

X ) nCmnXmXn + 2 £ ) ^ ^ [ / ( w ) ] - l o g f(w) 
w,n»»l w»«=l 

(63) =» £ namnxmxn + 2 ]T) awlm(w>) — x(w) 
m,n«l wa»l 

+ e"| Z «*—*»«• + 2 Re { Z U»(a»)> - iKw, w) . 
L «»,n»l \ m*»l / -J 

From (63) we derive: 
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R(w, x) | ^ 

(64) 
23 namnxmxn + 2 J3 XmAm^w) — x(w) 

+ 
+ 2 Re \ ]£ $mBm(w) > - ^(w, w) 

Since the right-hand side depends only on D and not on the particular 
function ƒ (s), this inequality, proved for the maximum of \R(w, X)\ 
only, holds a fortiori for the rest of the family $. 

As before, we may improve our result and prove: 

(65) 

N N I 

R(W, X) — 2 namnXmXn ~ 2 ] £ *Wlm(w) + %M 
m,n»l w-»l I 

£ 
N ( N } 

]C »&«m*»*» + 2 Re < X) $mBm(w) > - ^(w, w) 
fn,n«l \ m««l / 

This result contains of course Grunsky's inequalities as particular 
cases. If, on the other hand, we put #i->#**• • • • =## = 0, we get 
from (65) 

(66) log f(w) + x(w) | S | ^(w, w) ! 

or, in view of (53) and (570» the following inequality which is valid 
as long as all series concerned are convergent: 

(660 log ƒ ' ( » ) + 2 — <W0-(m+n) 

-i w 

1 
^ S —bnmürn,urin. 

n - 1 W 

In the particular case that D is the domain \z\ > 1 , we have flmn^O, 
bmn^àmn, whence: 

(66^) 1 log ƒ'(«,) 1 g log ' ' i 
I w|2 — 1 

a well known inequality. 
It would be of interest to derive estimates for Fn\f(w)] without 

combining this functional with other terms. But since the variational 
differential equation in this problem is much more complicated, no 
easy solution is to be expected. To indicate the difficulty of these 
questions, let us remark that the determination of exact bounds for 
|Fn[f(w)]\> even only in the case that D is the exterior of the unit 
circle, would solve simultaneously the Bieberbach problem for func-
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tions which are univalent inside the unit circle. On the other hand, 
the determination of exact bounds for the coefficients cmn in the Faber 
development would lead to such bounds for the Cin, that is, the coeffi
cients of univalent functions of the type (1). Since this problem is yet 
unsolved, we see that little progress is at the moment to be expected 
in the general question of the cmn. It appears, therefore, particularly 
interesting that for the functionals discussed above such an easy 
and complete answer is possible. Numerous other functionals of such 
variational behavior might be constructed and new inequalities be 
established. 
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