A NOTE ON LACUNARY POLYNOMIALS

MORRIS MARDEN

1. Introduction. In the present note we shall give an elementary derivation of some new bounds for the p smallest (in modulus) zeros of the polynomials of the lacunary type

$$
\begin{aligned}
& \text { (1.1) } f(z)=a_{0}+a_{1} z+\cdots+a_{p} z^{p}+a_{n_{1}} z^{n_{1}}+a_{n_{2}} z^{n_{2}}+\cdots+a_{n_{k}} z^{n_{k}} \text {, } \\
& a_{0} a_{p} \neq 0,0<p=n_{0}<n_{1}<\cdots<n_{k} .
\end{aligned}
$$

This will be done by the iterated application, first, of Kakeya's Theorem ${ }^{1}$ that, if a polynomial of degree n has p zeros in a circle C of radius R, its derivative has at least $p-1$ zeros in the concentric circle C^{\prime} of radius $R^{\prime}=R \phi(n, p)$; and, secondly, of the specific limits

$$
\begin{gather*}
\phi(n, p) \leqq \csc [\pi / 2(n-p+1)] \tag{1.2}\\
\phi(n, p) \leqq \prod_{j=1}^{n-p}(n+j) /(n-j) \tag{1.3}
\end{gather*}
$$

furnished by Marden ${ }^{2}$ and Biernacki ${ }^{3}$ respectively.
2. Derivation of the bounds. An immediate corollary to Kakeya's Theorem is:

Theorem I. If the derivative of an nth degree polynomial $P(z)$ has at most $p-1$ zeros in a circle Γ of radius ρ, then $P(z)$ has at most p zeros in the concentric circle Γ^{\prime} of radius $\rho^{\prime}=\rho / \phi(n, p+1)$.

We shall use Theorem I to prove the following theorem.

Theorem II. If all the zeros of the polynomial

$$
\begin{align*}
f_{0}(z)= & n_{1} n_{2} \cdots n_{k} a_{0}+\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{k}-1\right) a_{1} z \tag{2.1}\\
& +\cdots+\left(n_{1}-p\right)\left(n_{2}-p\right) \cdots\left(n_{k}-p\right) a_{p} z^{p}
\end{align*}
$$

lie in the circle $|z| \leqq R_{0}$, at least p zeros of polynomial (1.1) lie in the circle

[^0]$$
|z| \leqq R(p, k)=R_{0} \prod_{i=1}^{k} \phi\left(n_{i}, n_{i}-p+1\right)
$$

For this purpose we define the sequence of polynomials

$$
\begin{align*}
& F_{0}(z) \equiv z^{n_{k}} f(1 / z) \tag{2.2}\\
& F_{j}(z) \equiv z^{1-n_{k}+i_{1}+n_{k-j} F_{j-1}^{\prime}(z), \quad j=1,2, \cdots, k} . \tag{2.3}
\end{align*}
$$

We may verify easily that

$$
\begin{equation*}
F_{k}(z)=z^{p} f_{0}(1 / z) \tag{2.4}
\end{equation*}
$$

All the zeros of $F_{k}(z)$ therefore lie outside the circle $|z| \geqq\left(1 / R_{0}\right)$. By equation (2.3), the zeros of $F_{k-1}^{\prime}(z)$ are the zeros of $F_{k}(z)$ and a zero of multiplicity $n_{1}-p-1$ at the origin and, hence, only the latter lies inside $|z|<1 / R_{0}$. By Theorem I, $F_{k-1}(z)$ has at most $n_{1}-p$ zeros in

$$
|z|<\left[R_{0} \phi\left(n_{1}, n_{1}-p+1\right)\right]^{-1}=1 / R(p, 1)
$$

Let us now assume, as already verified for $j=1,2, \cdots, s$, that $F_{k-j}(z)$ has at most $n_{j}-p$ zeros in the circle $|z|<1 / R(p, j)$. From equations (2.3) with j replaced by $k-s$, it follows then that $F_{k-s-1}^{\prime}(z)$ has zeros of total multiplicity at most

$$
\left(n_{s+1}-n_{s}-1\right)+\left(n_{s}-p\right)=n_{s+1}-p-1
$$

in this circle. By Theorem I, therefore, $F_{k-s-1}(z)$ has at most $n_{s+1}-p$ zeros in the circle

$$
|z|<\left[R(p, s) \phi\left(n_{s+1}, n_{s+1}-p+1\right)\right]^{-1}=1 / R(p, s+1)
$$

By mathematical induction, it follows that $F_{0}(z)$ has at most $n_{k}-p$ zeros in the circle $|z|<1 / R(p, k)$.

By (2.2), $f(z)$ has therefore at most $n_{k}-p$ zeros outside the circle $|z|=R(p, k)$ and hence at least p zeros in or on this circle.

By using the limits (1.2) and (1.3), we now deduce from Theorem II the following corollary.

Corollary 1. At least p zeros of polynomial (1.1) lie in each of the circles

$$
\begin{align*}
& |z| \leqq R_{0} \csc ^{k}(\pi / 2 p) \tag{2.5}\\
& |z| \leqq R_{0} \prod_{i=1}^{k} \prod_{j=1}^{p-1}\left(n_{i}+j\right) /\left(n_{i}-j\right) \tag{2.6}
\end{align*}
$$

If it is known that all the zeros of the polynomial

$$
h(z)=a_{0}+a_{1} z+\cdots+a_{p} z^{p}
$$

lie in the circle $|z| \leqq R_{1}$, then the application of a theorem in a previous paper ${ }^{4}$ permits us to take

$$
R_{0} \leqq\left[R_{1} n_{1} n_{2} \cdots n_{k} /\left(n_{1}-p\right)\left(n_{2}-p\right) \cdots\left(n_{k}-p\right)\right]=R_{2}
$$

As (2.6) with R_{0} replaced by R_{2} is the bound furnished recently by Biernacki, ${ }^{3}$ we see that the bound (2.6) is at least as good as his bound.
3. Application to lacunary series. We shall now use Corollary 1 to prove the following theorem.

Theorem III. Let $\rho_{1}, 0<\rho_{1} \leqq \infty$, be the radius of convergence of the series

$$
\begin{aligned}
& g(z)=a_{0}+a_{1} z+\cdots+a_{p} z^{p}+a_{n_{1}} z^{n_{1}}+a_{n_{2}} z^{n_{2}}+\cdots, \\
& a_{0} a_{p} \neq 0, \quad 1 \leqq p<n_{1}<n_{2}<\cdots .
\end{aligned}
$$

Let the series $\sum\left(1 / n_{j}\right)$ be convergent, so that the product

$$
A(m)=\prod_{j=1}^{\infty}\left[1-\left(m / n_{i}\right)\right]
$$

is also convergent. Let ρ, the radius of the circle $|z|=\rho$ containing all the zeros of the polynomial

$$
G(z)=A(0) a_{0}+A(1) a_{1} z+\cdots+A(p) a_{p} z^{p}
$$

be such that

$$
\rho \prod_{j=1}^{p-1} A(-j) / A(j)=\rho_{2}<\rho_{1}
$$

Then $g(z)$ has at least p zeros in the circle $|z| \leqq \rho_{2}$.
Let us consider equations (1.1) and (2.1) as defining the sequences of polynomials $f(z, k)$ and $f_{0}(z, k)$ respectively. When $k \rightarrow \infty$, the sequence $\left[f_{0}(z, k) / n_{1} n_{2} \cdots n_{k}\right.$] converges uniformly to $G(z)$ in $|z| \leqq \rho$. By Hurwitz' theorem, for any given positive ϵ, we may choose a positive k_{1} so large that all the zeros of each $f_{0}(z, k), k \geqq k_{1}$, lie in the circle $|z| \leqq \rho+\epsilon$. By Corollary 1, at least p zeros of the $f(z, k), k \geqq k_{1}$, lie in the circle

$$
|z| \leqq(\rho+\epsilon) \prod_{j=1}^{p-1} \prod_{i=1}^{k}\left(1+j / n_{i}\right) /\left(1-j / n_{i}\right)<\rho_{2}+\epsilon\left(\rho_{2} / \rho\right)=\rho_{2}^{\prime}
$$

[^1]Choosing ϵ so small that $\rho_{2}^{\prime}+\epsilon<\rho_{1}$, we see that the $f(z, k)$ converge uniformly to $g(z)$ in $|z| \leqq \rho_{2}^{\prime}$. Thus $g(z)$ has p zeros in the circle $|z|<\rho_{2}^{\prime}+\epsilon$ and, since ϵ is arbitrary, in the circle $|z| \leqq \rho_{2}$.

As a corollary to Theorem III, we may prove that, if $g(z)$ is an entire function, it assumes every finite value an infinite number of times.

University of Wisconsin, Milwaukee

[^0]: Presented to the Society, September 5, 1947; received by the editors August 22 1947.
 ${ }^{1}$ S. Kakeya, Tôhoku Math. J. vol. 11 (1917) pp. 5-16.
 ${ }^{2}$ M. Marden, Trans. Amer. Math. Soc. vol. 45 (1939) pp. 335-368. See also M. Marden, The geometry of the zeros of a polynomial in a complex variable, to be published as a volume of Mathematical Surveys.
 ${ }^{8}$ M. Biernacki, Bull. Soc. Math. France (2) vol. 69 (1945) pp. 197-203.

[^1]: 4 M. Marden, Bull. Amer. Math. Soc. vol. 49 (1943) p. 97, Corollary.

