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1. Introduction. S. Lipka1 has recently announced a refinement of 
the classic theorem of Cauchy that all the zeros of the polynomial 

(1.1) ƒ(*) = a0 + axz + • • • + anz
n, an ^ 0, 

lie in the circle \z\ ^rt where r is the positive root of the real equa
tion 

(1.2) Fn(z) = | 0O| + U i | z + • • • + | an-i | z^1 - I an\ z
n = 0. 

Lipka's refinement consists in replacing the circle | s | = r by a curve 
G(r0, r\ nt «o) which bounds a gear-wheel region. This region is formed 
by deleting from the circle | z\ ^r the points common to the annular 
ring 0 O o < | z\ Sr and to the n sectors 

(1.3) — - — + ^ a r g 2 ^ — + — + , 
n In n n 2n n 

fc = 0, 1, • • • , n — 1. In these formulas r0 is the positive root of the 
equation 

(1.4) #.(*) - | ai| + | as| z + • • • + | a ^ i | s -* - | an\ *-* = 0 

and a0 = arg a0/an. 
Now, the Cauchy theorem is but a special case of the following 

theorem due to Pellet.2 

PELLET'S THEOREM. If the polynomial 

(1.5) f(z) = a0 + aiz + • • • + apz
p + • • • + anz

n, ap T* 0, 

is such that the real polynomial 

(1 6) F , W = ' *°' + ' a i ' Z + ' ' ' + ' ap""1' **~l "" ' a p ' 2P 

Presented to the Society, September 3, 1947; received by the editors August 22, 
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1 S. Lipka, Monatshefte für Mathematik und Physik vol. 50 (1944) pp. 209-221. 
2 A. Pellet, Bull. Sci. Math. vol. 5 (1881) pp. 393-395. The converse to this theorem 

was discussed by J. L. Walsh, Ann. of Math. vol. 26 (1924-1925) pp. 59-64 and A. 
Ostrowski, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 742-746. See also M. Marden, 
The geometry of the zeros of a polynomial in a complex variable, chap. 7, to be published 
as a volume of Mathematical Surveys. 
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has two positive zeros r and R with r<R, then f (z) has exactly p zeros in 
or on the circle \z\ ^r and no zeros in the annular ring r < \ z\ <R. 

It is Pellet's theorem which we propose to refine as indicated in the 
following theorem. 

THEOREM 1.1. Under the hypotheses of Pellet's Theorem the poly
nomial 

**(*) « | * i | + | <*i| * + • • • + | <**-i| zp~2 - I *p\ *p-1 

+ U*+i| **+..• + M * - 1 

has also two positive zeros r0 and R0 with 

(1.8) r0<r<R<RQ. 

Furthermore, f (z) has exactly p zeros in or on the curve G(r0, r; p, a0) 
where ac = arg a0/ap and no zeros between the curves G(r0, r; p, a0) and 
G(R, Ro) p, ao+ir). 

Theorem 1.1 will be proved in §2 and applied in §3 to the refine
ment of various known bounds on the zeros of a polynomial. Finally, 
the theorem will be generalized in §4, first by replacing the poly
nomial $p(z) by the polynomial $kP(z) ~ FP(z) ~\ah\zh and secondly 
by replacing the polynomial ƒ(z) by a power series. 

2. Proof of Theorem 1.1. Let us first prove the existence of the 
roots r0 and R0 of equation $p(z)=*0 and the validity of inequality 
(1.8). Since r and R are the positive zeros of Fp(z), it follows from 
(1.6) that, for any sufficiently small positive number €, 

(2.1) Fp(p) < 0 if r + e^ p£R- e. 

In view of the equation 

(2.2) Fp(z) - | oo|+**,(*), 

the zeros r and R of Fp(z) satisfy the relations 

(2.3) *,(r) = - J a01 It < 0, *,(*) - - | ao \ /R < 0. 

When taken together with the facts that 

(2.4) <M0)>0, $ p ( * ) > 0 , 

the relations (2.3) imply the existence of two positive zeros r0 and Ro 
of &p(z) and the validity of inequality (1.8), as well as the inequality 

(2.5) *p(p) < 0 

for to + e g* p 2g RQ — c. 
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Let us now set z—pe*0 and 

(2.6) <ik/ap = Ake
aki, k = 0, 1, • • • , n. 

In this notation, the real part of ppf(z)/apz
p is 

Re [ppf(z)/apz*>] - E Apt cos [(p - j)0 - a/] + p" 

w 

+ 12 ^iP' C°S [(i - />)0 + «,] 
f-P+l 

and the inequalities (2.1) and (2.5) become 

(2.8) pp> ^o+ ilip + • • • + ^p-ip^1 + 4p+iPp+1 + • • • + 4nPw 

for r + e ^ p ^ i ? — €, and 

(2.9) p* > Axp + «42p
2 + • • • + ^ P - I P ^ 1 + ^P+IP P + 1 + • • • + 4̂nPn 

for r 0 + € ^ p ^ i ? 0 —€. 
On substituting from inequality (2.8) into (2.7), we find 

p-i 

Re (p*f(z)/apz*) > £ i i ,p>{cos [{p - j)9 - a f] + l } 

+ E îp'lcos [o - rt« + «() + il s « 

for r + c ^ p ^ i î —€. On substituting from inequality (2.9) into (2.7), 
we find 

Re {ppf(z)/aPzp) > A0 cos (p0 - a0) 

+ S Apt [co* [(p-j)d - «,J + M 

+ Z ^P'{cos [(i - p)0 + a,] + 1} 

for r0+e^p^i?o~-e. The right side of (2.11) is surely non-negative if 
0 is such that cos (pd—ao) ^ 0 , that is, such that 

\- 2rk £ pd - aQ $> h 2ick, 
2 2 

where k is an integer; that is, if 

+ £ fl g _ + + * - 0, 1, • • • , #. 
p 2p p p lp p 
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In other words, 

(2.12) Re (ppf(z)/apz») > 0 

and hence ƒ(z) 9*0 at all points z between the curves G(r0, r; p, a0) 
and G(R, i?oî p, <X0+T). 

Inequality (2.12) also may be used to show that in or on the curve 
G(fo, r; p, a0), there are exactly p zeros of ƒ (2). For, let us consider the 
net change Aoe arg w in the argument of the point w= [ppf(z)/apz

p] 
as z describes counterclockwise the curve Gt=*G(ro+e, r+e; p, a<>) 
where € is a small positive number. Since Re (w)>0, w describes a 
closed curve entirely in the right-half w-plane. That is, Aoe arg w*=0 
on this curve. This means that the function w has as many zeros as 
poles in the curve G€ and this, in turn, means that f(z) has precisely 
p zeros in G« for every sufficiently small positive €. 

3. Applications. Let us first apply Theorem 1.1 to the class of 
polynomials 

ƒ(*) = M<* + (Ji - b0)e^z + • • • 

+ (bm- bm^)e^zm - bme^z**1 

where the bj are real numbers such that 

(3.2) V . i < Jp-2 < • ' • < &0 < 0 < bm < bm-i < • • • < bp. 

The corresponding polynomials F9(z) and *P(z) are 

/^(z) - - 60 + (h - h)z + • • • + (pp.* - VOa»"1 

(3.3) - {b, - br-àt' + (b, - &P+i)z"+1 + • • • 

+ (bm-i - bm)zm + 6TOzm+1, 

*»(*) - (*o - Ji) + • • • + (J^-i - Vi)z '~2 

(3.4) _ (bp - b^tT* + {b, - JH-0* ' + • • • 

+ (J—1 - fc.)*—1 + »»»". 

On denning 

(3.5) g(z) « h + fa + • • • + *«s», 

we may write 

FM - (z - l)g(z), »*,(i) - Jo + «(«)(« - 1). 

Clearly F„(1)=0. Since F , ( l+8) -8g( l+«) , then for 3 sufficiently 
small g(l) >0 implies that Fp(l +$) >0 or <0 according as 5>0 or <0 
and g(l)<0 implies that Fp(l+$)<0 or >0 according as 5>0 or 
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<0. That is, using the notation of Theorem 1.1, we see that 

H < r < 1 = R < Ro if g(l) > 0, 

r0<r=KR<R0 if g(l) < 0, 

ao = Po — ftp + **. 

We thereby conclude that the following is true. 

THEOREM 3.1. Letf(z)t $p(z) and g(z) denote the polynomials (3.1), 
(3.4) and (3.5) respectively. Then, if g(l) >0,f(z) has exactly p zeros in 
the curve G(r0, 1; p, j3o—&>+7r) and g{z) has p zeros in the curve 
G(ro, 1; p, TT). If g(l) <0, ƒ(z) has p zeros in or on the curve G(r0, 1; 
p, Po—pp+ir) and g{z) has p — l zeros in or on the curve G(r0, 1; p, T). 

An analogous result for g(z) with, however, curve G(r0, 1 ; p, T) re
placed by the circle \z\ =1 was first stated by Berwald.3 His result 
was a generalization of the Kakeya-Eneström4 theorem that all the 
zeros of the real polynomial (3.5) with 0<bo<h< • • • <bn lie in 
or on the unit circle \z\ = 1 . Our analogy to the Kakeya-Eneström 
theorem will be included in the following theorem. 

THEOREM 3.2. Every polynomial of the form 
n 

ƒ(*) - E (fii ~ bi-ù&t't *-i = *n - 0 < bQ < bx < • • • < &«-i, 

has all of its zeros in or on the curve G(r0, 1 ; n, /3o — Pn+ir) where r0 is 
the positive root of the equation 

$n - (6l ~ h) + (fit - h)Z + • • • + (finr-l - bn-2)z«~* - bn-tZ»-1 « 0. 

Furthermore, every polynomial of the form 

g{z) = bo + bxz + • • - + en-is*-1, 0 < 60 < bx < • • • < &w-i, 

has all of its zeros in or on the curve G(r0, 1 ; n, 7r). 

This theorem may be derived from Theorem 3.1 indirectly by a 
limiting process or directly by the same methods as used for Theorem 
3.1. 

In our next application, we shall use Theorem 1.1 just in the case 
p = n. This restriction is made only to simplify the statement of re
sults, since a similar application may be made when p is an arbitrary 
integer, 0<pSn. The result to be proved is the following. 

3 L. Berwald, Math. Zeit. vol. 37 (1933) pp. 61-76. 
* S. Kakeya, Tôhoku Math. J. vol. 2 (1912) pp. 140-142 and G. Eneström, Ibid, 

vol. 18 (1920) pp. 34-36. 
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THEOREM 3.3. Let Xi, X2, • • • , X» and ix\> ix*, • • • , /iw-i be any two 

sets of numbers such that 

£ (1/X3) = 1, £ (1/M,) = 1; 0 < M* S X/, i - 1, 2, . . . , n - 1. 
a- i 3-1 

for /Ae polynomial f (z) ~ao+aiZ+ • • • +a«sn, feJ 

(3.6) M = max [X* | a*-* | /1 an | ]*'*, k - 1, 2, • • • , w, 

(3.7) Mo = max [ju*| a*-*| /1 a*| ]1/fc, * - 1, 2, • . . , » - 1. 

jTAew a// the zeros off(z) lie in or on the curve G(Mo, M\ n, ao), where 
ao = arg (aQ/an). 

From (3.6) and (3.7), obviously 0 <M0<M. Also, 

Xfc I Gn-fc I 2£ J an J M , M* I Gn-.fc I a* I On I A f O 

and thus 

(3.8) Ê I a„_*I M""* g £ (IA*) I aB I M" = I a„ I Jf", 

(3.9) £ 1 «_» 1 M r* ^ § a//»*) u„ 1 M; = 1 aB 1 K 

An equality in (3.8) would imply that M is the positive root r of the 
equation (1.2) whereas an inequality in (3.8) would imply that M>r. 
Likewise, an equality m (3.9) would imply that Mo is the positive 
root r0 of the equation (1.4) whereas an inequality in (3.9) would 
imply that Mo>r0. Since by Theorem 1.1 all the zeros oîf(z) lie in or 
on the curve G(r0, r; n, a0), they surely all lie in or on the curve 
G(M0, M; n, a0). 

Theorem 3.3 whose proof we have just completed is a refinement of 
the result due to Fujiwara6 that all the zeros of f(z) lie in or on the 
circle \z\ i&M. 

As a simple application of Theorem 3.3, let us take X,= » for 
i = l, 2, • • • , n and [Xj — n — 1 for i = l, 2, • • • , n — 1. We obtain 
thereby the following corollary. 

COROLLARY 3.3a. For the polynomial f(z) ~ao+aiZ+ • • • +anzn let 
N—max [n\an-k/an\ ]1,k, & = 1, 2, • • • , n, and iV0 = max [(» —1) 
I an-k/an\ ]1/A?, & = 1, 2, • • • , « — 1. Then all the zeros off(z) lie in or on 
the curve G(N0, N; n, a0) where a0 = arg (ao/an)< 

* M. Fujiwara, Tôhoku Math. J. vol. 10 (1916) pp. 167-171. 
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As another simple application of Theorem 3.3, let us take 
»-*i 

X* = ]£ \ai I /1 an-k |, k « 0, 1, 2, 3, • • • , n, 
3-0 
n-1 

Mfc = Z ) \ai I / I «n-fc | , * = 0, 1, 2, • • • , n ~ 1. 
3-1 

Clearly, 

Here 

S IA* - i, L I/M* - i. 
3 * - l 3 - 1 

23 I ai I / I an I I - X0 or Xo W 

according as Xo>l or < 1 , and 
w - l -ll/ife 1/» [ » - l - i l / * x 

2 I a*1 / I an | *• Xo or MO 

according as /io>l or < 1 . We thereby obtain the following corollary. 

COROLLARY 3.3b. For the polynomial f (z) =a0+aiz+ • • • +anz
n, let 

w-*l «—1 

Xo = X I *i I / I an | <Wrf MO - 2 I ** I / \ a » I • 
3»0 3*1 

Let 7 = Xo ör Xj/n according as Xo > 1 or < 1, <md /e/ 5 = /xo or Mo/tt accord
ing as MO>1 or < 1 . TTjew a// tóe seros of f(z) lie in or on the curve 
G(5, 7; n, a0) w&ere ao=sarg a0/an. 

4. Generalizations. Let us define ^kp(z) = Fp(z) — |a*|s*, &?*£. 
Since *op(s) = 2*P(JS), the positive zeros of &P(z) are also the positive 
zeros of ty0p(z). By modifying somewhat the details of proof of 
Theorem 1.1, we may prove the following generalization. 

THEOREM 4.1. Under the hypotheses of Pellet's Theorem the poly-
nomial 

*kp(z) - Fp{z) - | ah | z\ ky*p,ah7£ 0, 

has also two positive zeros rk and Rk with rh<r<R<Rjç. Furthermore 
f(z) has exactly p zeros in or on the curve G(rkt r\ p—k, ak) where 
a* = arg (ak/ap) and none between the curves G(rkf r\ p—k,ak) and 
G(R,Rk;p-k,ak+w). 
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Our final generalization will consist in replacing the polynomial 
f(z) of Theorem 4.1 by a power series. 

THEOREM 4.2. If the power series 

f(z) = a0 + aiz + • • • + apz
p + • • • , akaP ^ 0, 

having a radius of convergence ofp,0<p^^>,is such that each polynomial 

FnP(z) = | a01 + | ai | z + • • • + | %-i | z»-1 - | ap \ z
p 

+ \ap+1\z*+1+ ••• + | f ln |* n 

with n^N>p has a positive zero r(n), r ( n )^px<p, then the f unction 
7?p(s)=limw«00 Fnp(z) has a positive zero r<p\ the function 

Vkp(z) = Fp(z) - | ak | z\ k f* p, 

has a positive zero rk, rk<r<p, and the f unction f (z) has exactly p zeros 
in or on the curve G(rk, r\ p — k, ak) and hence in the curve G(rk, p; 
p — k, ah). 

This theorem results from Theorem 4.1 on the use of the Hurwitz 
theorem that within its circle of convergence a non-constant power 
series ƒ (z) = XXo aJz' has as zeros the limit points of the zeros of the 
polynomials fn{z) = Y$-o o,jZ*. 

If Fnp{z) has two positive zeros in \z\ <p, we may choose r(n) as 
the smaller one. Letting 

*»%*(*) - Fnp(z) -\ak\ zk, 

we see that ^nkP(z) has a positive zero r£n), r£w) <r(w). Clearly, the power 
series Fp(z) and ^kp(z) have the same radius p of convergence and 
have respectively the positive zeros r = limnmmyi r(w) and ^ = limn„00 r$\ 
with rk<r<p. Now, given any small positive e, we can find an N>0 
such that the circle of radius e drawn about the point z = r will contain 
r(n) for all n^N and the circle of radius e drawn about z~rk will 
contain r^ for all n*zN. This means that in or on the curve 
G(rk+e, r+e; p — k, ak), which for any sufficiently small positive e is 
contained in the circle | z\ <p, lie exactly p zeros of each polynomial 
fn(z) for all n^N. Since a circle of radius e about any zero oif(z) in 
| z\ <p contains a zero of each ƒ«(*), n à N, it follows that in or on the 
curve G(rk+e, r+e; p — k, ak) lie exactly p zeros of ƒ(z). Since e is an 
arbitrary, small positive number, it follows that exactly p zeros of 
f(z) lie in or on the curve G{rk, r;p — k,ap) as stated in Theorem (4.2). 
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