
ON A CLASS OF PERFECT SETS 

P. KESAVA MENON 

Let {an} be a sequence of positive numbers such that 

(i) Z «- - i, 
1 

00 

(2) <*n ^ i?n = I > * (fl = 1, 2, 3, • • • ). 
n+1 

Also let 5 be the set of numbers a defined by 

(3) a = %a* 

an = 0 or an (n = 1, 2, 3, • • • )• 

Then we have the following: 

THEOREM 1. The set S is perfect; two series of the form (3) have the 
same value if and only if they are of the forms 

(4) z\ + z2 + - • • + zk-i + 0 + ak+i + ak+2 + • • • , 

(5) zi + z2 + • • • + s*-i + ak + 0 + 0 + • • • 

where s, = 0 ör a» (i = l, 2, • • • , & — 1) a#d aAs = i?Ajî if ak>Rk then no 
number of the set S lies between two numbers (4) and (5) ; every number 
of the closed interval (0, 1) other than those between pairs of numbers of 
the forms (4) and (5) belongs to S; if among the relations (2) there are an 
infinity of strict inequalities then the set S is totally disconnected; if all 
but a finite number of the relations (2) are equalities then the set S con-
sists of a finite number of closed intervals; and, finally, the measure of the 
set S is lim^^oo 2nRn. 

I t is obvious that all numbers of the set S lie in the interval (0, 1). 
I t is also obvious that when ak = Rk the series (4) and (5) have the 
same value. Let us now suppose that the &th terms are the first which 
differ in two series of the form (3) having the same value. It is clear 
that the &th term in one of the series is 0, and in the other ak. Sub
tracting the former series from the latter we get 

(6) ** - E ± ain = 0 
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where the suffixes in run through the whole or a subset of the set of 
numbers k + 1, k + 2, • • • . But from (2) we have 

00 

(7) ah è Yli an-

This can be compatible with (6) only if the suffixes in run exactly 
through the whole set of numbers k + 1, k+2, • • • , all the signs 
under 23 *n (6) are positive, and (7) is an equality. This implies that 
the two series having the same value are of the forms (4) and (S) 
with ak = Rk-

If ah>Rk then the series (5) is obviously greater than (4). Also, of 
all series of the form (3) whose first k terms are the same as those in 
(4) the latter is the greatest, and of all series whose first k terms are 
the same as those in (5) the latter is the least. Hence if the value a of 
a series lies between (4) and (5) then the first k — 1 terms of the 
series cannot all be the same as those of (4) and (5). Let, therefore, 
the Ith term, l^k — 1, be the first in a to differ from those in (4) and 
(5). Then a will be greater than (5) if Zi = 0 and less than (4) if zi = ai, 
which contradicts the assumption that a lies between (4) and (5). 

Let us suppose that a is any number in the interval (0, 1) which 
does not lie between two series of the forms (4) and (5). If a is the 
sum of a finite number of distinct an's then it is obviously a number of 
the set S. If tha t is not the case, then let, in the first instance, a lie 
between 1 and a%. From (1) it follows that there is a number v\ 
greater than 1 such that 

(8) ai+ a2+ ' ' ' + an-.! < a < ax + a2 + • • • + a>n\ 

but since a does not lie between 

<*i + #2 + • • • + an + 0 + 0 + • • • 

and 

0i + «2 + • • • + 0*1-1 + 0 + an+1 + an+2 + - - • 

the right-hand inequality in (8) can be sharpened into 

(9) a â 0i + 02 + • • • + 0^-1 + 0 + an+1 + an+2 + • • ' . 

If (9) is an equality then a is a number of the set S; if it is an in
equality then there exists a suffix v2 ( > 2 ) such that 

. . 0i + • • • + 0,1-1 + 0 + 0„1+i + • • • + 0„2_i 

< a < ax + • • • + an-i + 0 + an+1 + • • • + a,r 
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It is, of course, supposed that if 2̂ = 1̂ + 1 , then the first member of 
the inequalities (10) is just d\+ • • • +a*1_i. As before we may sharpen 
the right-hand inequality in (10) into 

a ^ ax + - • • + an-i + 0 + an+1 + • • • + a9r-i + 0 

If (11) is an equality it follows that a: is a number of the set S; other
wise, we can find another number vz ( > ^ ) such that 

0i + • • • + 0n-i + 0 + an+i + • • • + 0*2-i + 0 + tf„2+i + • • • + 0,3-1 

< a < 0i + • • • + 0„1_i + 0 + an+i + • • • + 0*2-i + 0 

+ 0„2+i + • • • + 0̂ 3-

Proceeding in this manner we either arrive at an expression for a of 
the form (3) after a finite number of steps, or enclose a between nar
rower and narrower bounds tending to the common limit a. This 
common limit is, by the nature of the construction of the bounds, a 
series of the form (3) so that ce is a number of the set S. If, on the 
other hand, # i > a , then there exists a suffix i (>1 ) such that 

di+i < a < 0t 

since an decreases to zero as n tends to infinity. We proceed by 
sharpening the right-hand inequality into 

a ^ 0 + 0i+i + ai+2 + • • • 

and complete the proof that a belongs to 5 exactly as above. 
Since for a given k the number of pairs of numbers of the forms (4) 

and (5) is finite, the set of all such pairs of numbers is enumerable 
and therefore the numbers of the interval (0, 1) not contained in S are 
those of an enumerable set of disjoint open intervals. This completes 
the proof that 5 is perfect. 

If all but a finite number of the relations (2) are equalities it is 
obvious that S consists of a finite number of closed intervals. If, on 
the other hand, an infinity of the relations (2) are inequalities, then 
the set is totally disconnected. For, let a be any number of the set 5, 
say, 

a = h + b2 + bz + • • • , bn = 0 or an (» = 1, 2, 3, • • • )• 

Given e>0 , arbitrarily small, choose n so large that 

Rn = an+i + 0n+2 + • • • < €. 

By hypothesis there exists a number k>n such that dk>Rk- The 
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open interval I whose end points are 

})l _ ) _ . . . _|_ l>k_tl -(- 0 + öfc+i + djc+2 + * • • , 

* ! + • • • + bk-x + ah + 0 + 0 + • • • 

is contained in the interval (a — e, a) or in the interval (a, a+e) ac
cording as bk = cik or 0. It follows that there are numbers arbitrarily 
close to a and not belonging to S which proves that S is totally dis
connected. 

We may write the relations (2) in the form 

Rn-i ^2Rn (n = 1, 2, • • • ) 

from which it follows that 

(12) 1 à 2Ri â 22R2 ^ 23i?3 ^ • • • 

and hence that limns=00 2ni£n exists. We shall now show that this limit 
is the measure of the set 5. 

In fact the length of the open interval whose end points are (4) 
and (5) is obviously 

00 

®k — 2_j 0>n = Rk-1 -~ 2Rk', 

also, for a given k, the number of pairs of numbers of the forms (4) 
and (5) is 2/b~1; therefore the total length of such intervals is 

2*-1CR*-i- 2**); 

summing over all k from 1 to n we get 

f ) (2*-1**-! - 2kRk) = 1 - 2«Rn; 
1 

finally, letting n tend to infinity we get the measure of the comple
ment of the set 5 from which it follows that the measure of S is 
limw=00 2nRn. 

If the relations (2) are all equalities then the relations (12) are also 
all equalities and we get 

an = Rn = 1/2- (n « 1, 2, • • • )• 

In this case the set 5 consists of the whole of the interval (0, 1) and 
the representation of the numbers of S by series of the form (4) is the 
ordinary binary representation. If the relations (2) are not all equali
ties then the relations (12) are also not all equalities and so 
limWŒ00 2nRn<l. 
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I t is easy to construct sets of the type 5 having any given measure 
a, 0 ^ a < l . In fact, let {sn} be a monotonie decreasing sequence 
tending to a with s0 = 1, and let the sequence {an} be defined by the 
relations 

$n— 1 $n , 

dn = (» = 1, 2, • • • ). 
2n-l 2n 

It is clear that the an's satisfy conditions (1) and (2) and that the set 
5 constructed with these an's has the measure a. 

Kakeya has proved1 that if {an\ is a sequence of positive numbers 
satisfying the relations 

(13) £ an = s, 

an ^ Rn 

0>n ^ Rn, 0>n è Gn+l 

(» = 1, 2, • - • , k -
(n = k, k + 1, • • 

i), 

• ) -

(14) an ^ Rn, an ^ an+1 (n = 1, 2, 3, • • • ) 

then the set 5 of all numbers of the form (3) consists of the whole 
interval (0, s). 

Let us now suppose that {an\ is a sequence of positive numbers 
satisfying the relations (1) and 

(15) 

(16) 

and consider the set S of all numbers of the form (3). If all the rela
tions (15) are equalities then (15) and (16) together reduce to a par
ticular case of Kakeya's relations (14) and the set 5 will be the whole 
of the interval (0, 1). Let us therefore suppose that the relations (15) 
are not all equalities. I t can then be shown that S consists of a finite 
number of disjoint closed intervals. 

To prove this let us observe that by Kakeya's Theorem the num
bers of the form 

00 

2 an y °>n = 0 Or an, 
k 

fill the whole interval 1(0, i?*). The set S will therefore consist of I 
and the intervals obtained by moving 7 towards the right through 
the distances 

a{ + a{ + • • • + dk-u al = 0 or 0* (i = 1, 2, • • • , k — 1). 

The interval I and those obtained by the translations have no points 
1 G. Pólya and G. Szegö, Aufgüben, Part 1, no. 131. 
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in common except perhaps end points, and they do not cover the 
entire interval (0, 1). 

In fact, if one of the relations (IS) is an inequality, say, ai>Ri, 
then, as in our previous discussion, it can be seen that there is no 
number of the set within the interval whose end points are 

*i + • • • + s*-i + 0 + ai+i + ai+% + • • • , 

* ! + • • • + *i_l + 01 + 0 + 0 + • • • . 

I t is also not difficult to see that the only gaps in the set S are those 
which arise in this manner. 

For, if we arrange the numbers 

<*i + &i + • • • + 0*_i, a{ = 0 or ai (i = 1, 2, • • • , k — 1) 

in increasing order of magnitude, then any consecutive pair will be 
of the form 

a = Z\ + z2 + - • • + **-i + 0 + at+i + ai+2 + • • • + ak-i, 

0 = Z! + Z2 + ' • • + SZ-1 +0Z + O + O + - - + O 

where Zi = 0 or a* (i = l, 2, • • • , 1+1), l^k — 1. Moving the interval 
I through the distances a and |8 we get the two intervals (a, a+Rk) 
and (j8, (3+Rk). The right-hand end point of the former is clearly less 
then or equal to the left-hand end point of the latter according as ai 
is greater than or equal to Ri. 

As an illustration we may prove the following. 

THEOREM 2. Let S(t) be the set of numbers of the form 

(17) fr - / * + / < • - . . . 

where {in} is a finite or infinite sequence of increasing positive integers, 
zero included, and 0 < / < l . Then S(t) will consist of the whole of the 
interval (0, 1) if 1 / 2 ^ / < 1 and will be a totally disconnected perfect 
set of measure zero if 0 < 2 < l / 2 . Also, in the latter case, for a given 
t, no two series of the form (17) represent the same number of the set S(t). 

To prove this we have only to take aw = /n""1 — tn (» = 1, 2, • • • ). 
Then for 1/2 :g/ < 1 we get relations of the form (14) (Kakeya's type) 
and, for 0 < / < l / 2 , relations of the form (2). In the latter case it is 
moreover clear that all the relations are strict inequalities. Hence 
the first part of the Theorem follows from Kakeya's Theorem and the 
rest from Theorem 1. 
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