
BOUNDS ON CHARACTERISTIC VALUES 

EDWARD W. BARANK1N 

In a previous paper [ l ] 1 the author obtained several upper bounds 
for the characteristic roots of a finite matrix. The purpose of this note 
is to establish the corresponding results for characteristic values of 
certain linear transformations in certain infinite spaces. 

1. Infinite matrices. We consider a non-null infinite matrix, 
A = (ast), s, 2 = 1, 2, • • - , of complex numbers. (The present con­
siderations pertain also to the finite case when a5* = 0 for s>n and 
t>n.) We shall say that A is absolutely summable (abbreviated a.s.) 
when the double series ^8,t \ a9t\ converges. In general, if ^s,t | a8t\

 p 

converges for a positive number p, A will be said to be absolutely 
summable (p). If A is a.s.(£), then X^l a*«|p converges for all s, 
X^«| ast\ v converges for all t, and 

si«i.i'-zz:i«..i'-E5:i«..i'-
S,t 8 t t 8 

We define 

t 8 

and, for brevity, R. = R?\ Tt=T^\ Clearly if A is a.s.(£), it is a.s.(g) 
for every q>p. Observe also that i?sP) = 0 or T$p) = 0 imply, respec­
tively, the vanishing of all elements in the sih row or of all elements 
in the tth column of A. 

Let A be a.s.(^), p^>l, and I denote the space of bounded se­
quences of complex numbers {xr}. Throughout, we shall view A as a 
transformation in /. As such, A carries / into a proper sub-manifold. 
For, let {xr} £ / , and \xr\ <M, f = 1, 2, • • • . Then the transform of 
\xr} has the components 

y8 = S <*•*%*> s = 1, 2, • • • . 
t 

Since p£*l, we have 

I y s \v ^ ( Z I *.* I • I *« I Y ^ ̂  ( E k « IY ^ M* £ | *. « |*, 
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and therefore ^ « W 2 * '1S convergent. An immediate consequence 
of this is the following. 

LEMMA. If A is a.s.(p), p^i-l, and {xr} & is a characteristic vector of 
A belonging to a nonzero characteristic value, then ^\xr\

p is convergent. 

It will be assumed in the details of all proofs to follow that the 
characteristic value XT^O; the truth of the theorems is evident for 
X = 0. 

THEOREM 1. If A is a.s., and has a characteristic value X, then: 

(i) \\\2èmax(8)R8T8. 

(ii) |X| ^max(8)R8. 

(iii) |X| ^max ( s )7V 

The bound (i) is stated separately because of its simplicity; it is a 
particular case of the next theorem. The proofs of (ii) and (iii) are 
completed by the addition to the proof for the finite case (cf. [l]) of 
the remark that, by virtue of the lemma above, the l.u.b. of the 
components of a characteristic vector is attained. 

THEOREM 2. If A is a.s.(p), pSl, and has a characteristic value X, 
then for any number q in the interval p^*q^2 — p, 

| X I ^ max R8 T8 

(O 

Let {x8} be a characteristic vector of A belonging to X, so that 
Xx8= ^ta8txt, s = l, 2, • • • . From these equations we derive the 
inequalities 

(i) M M ^ EU«II**I, 5 = i ,2 , . . . , 
t 

which we write in the form : 

N l * . | ^ Z I ^ I 5 / 2 - l ^ l w / 2 l ^ | . 
t 

Application of the Schwarz inequality to the right-hand member, as 
indicated by the decomposition, yields 

xiki^{(Ek(r)(zKH^i2)} 
/ V i .*-. I , A1'2 

1/2 

= O W 
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or, squaring this, 

(2) ixfur^rzi^rui2, 5 = 1,2,.... 
t 

Since q lies in the interval [p, 2~p], the numbers q and 2 — q are not 
less than p, and therefore Rjp and 

exist for each s. 
Now if i 4 a ) =0 , the inequality (2) for s — k gives X A = 0 . Hence, in 

mc& of the inequalities (2), the term | a8h\
 2~5-1 xh\

2, in the sum on the 
right, vanishes. That is, if all the matrix elements of the &th row van­
ish, the elements of the £th column do not appear in the inequalities 
(2). Let us denote by A. = (âmn) the matrix obtained from A by delet­
ing the null-rows and the corresponding columns, and re-indexing the 
elements that remain, in the order in which they remain. Also, let 
{%n} be the re-indexed characteristic vector after dropping those zero-
components which correspond to null-rows. We can depict the cor­
respondence of the elements of A with those of A by the notation 
àmn = aSm8n. We remark that 

I 0"mn I -L sn 

m 

This is so since the elements of the snth column of A which are deleted 
to leave the nth. column of Â are those which lie in deleted rows, and 
such elements are all 0. Thus 

2 J | âmn | q differs from ] £ I ar*n \ * = T,n * 
m r 

only by 0-terms. 
With the new notation, (2) is completely represented by the sys­

tem 

(3) | X | | Xm | ^ RSm ]C I &™n | | %n \ , W = 1, 2, • • • , 
n 

where now R® ^0 for each m. 
We may therefore divide the rath inequality by R™, and sum over 

m, to obtain 

(4) E - ^ l * - f sEI^M*.! ' -Ei^Mfcf-
m,n 
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This last summation is valid since 

T8n \ xn\ ^ M 2^TSn ^ M 2^Tt , 
n n t 

the last member here being convergent for 2 — gSP- The inequality 
(4) may be put in the form 

?(^-rr)i_r*a 
Hence it appears that for some s0, since {tf5} ?* {0}, 

I X I 2 (2—a) 
-t SO ~ ^ j 

*i? 
or 

K | 2 . - , («) - , («-«) ^ ^,(3)^(2-3) 
X ^ RS0 T8o S m a x Rs T8 

00 
This proves the theorem. 

We state without detailed proof the following generalization of the 
last result. 

THEOREM 3. Let A, X be as in the preceding theorem. Let (qst), s, t 
= 1,2, • • • , be a matrix of real numbers, only a finite number of which 
lie outside the interval (p, 2—p). Then 

X 12 S max {(Zk.h)( El *.!*--)} 
The method of proof is clear. One starts with the inequalities (1) 

decomposed as follows: | X | | x8 \ S X)< I ast \q8t,i- \ #«* \l~q^ \ xt\. 
In the direction of a still more comprehensive class of bounds, we 

indicate the possibility of substituting the general Holder inequality 
for the Schwarz inequality above. 

2. Integral equations. Analogues of all the results of §1 hold for 
characteristic values of integral equations. Here we shall state and 
prove only the correspondent of Theorem 1, to fix the procedure. We 
consider the integral equation 

(5) \f(s) = f K(s, t)f(t)dt, 
J Gt 

where Gt is a fixed set on the /-axis, and the kernel K(s, t) is summable 
on G8XGt, Gs being the set on the s-axis corresponding to Gt on the 
/-axis (such corresponding sets will be designated in this way through-
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out). We are concerned with characteristic f unctions ƒ (s) of (5) in 
the space of bounded measurable functions on G8. In this case we 
have, corresponding to the lemma of §1, that a characteristic f unction 
of K, belonging to a nonzero characteristic value, is integrable on G8. 

If, when these integrals exist, we set 

R(s) = f | K(s, t) | dt, T(s) = f | K(t, s) | dt, 
J Gt J Gt 

we have the following theorem. 

THEOREM 4. Let the kernel K be as above, and X a characteristic value 
of K. Then: 

(i) \\\^supisGG.)R(s)T(s), 

(ii) | \ | gsup ( s G ( ? , ) R(s), 

(iii) | \ | gsup(8E(?,) T(s), 

From the summability of K it follows that R{s) and T(s) exist al­
most everywhere on G8\ on the set E8, say. Then, from (5), 

ix|.|/(*)is r i^(5,oi-i/(oi* 
J Et 

K(s,t)\^-\K(s,t)\^\f(t)\dt. -ƒ 
J Et 

For SÇLE8 we may apply the Schwarz inequality to the extreme right 
member, and on squaring the result obtain 

|x|»|/(*)N-R(») f |*(*,0||/(0h«. 
J Et 

The integral on the right is finite since ƒ(/) is bounded. Let H8 be the 
subset of E8 on which R(s) > 0 . We observe that ƒ(/) = 0 for t&Et-Ht. 
Therefore, we may write, for sÇzHs, 

|/(*)|s :g f |*(s,0||/(0h». 
J Ht 

We integrate both sides of this inequality over H, : 

By Fubini's theorem the order of integration in the right-hand mem-
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ber can be reversed, the two repeated integrals being in fact equal to 

f f \K(s, t) | | ƒ(*) \Hsdt S (sup | ƒ(/) \y f f I K(s, t) | dsdt, 
J J HaXHt J J G8XGt 

which is evidently finite. Hence, we have, on further interchanging the 
letters 5 and / on the right, 

f - ^ r l / W l ^ ^ f l/Wl2jf \K(t,s)\dt\ds 
J H9 R(S) J Ht W U # J 

^ f T(s)\f(s)\*ds. 

This may be put into the form 

/».(w-r ( s )) l / ( s ) l'JsS0-
f(s) is non-null on H8} and therefore, for some so, 

M' 
R(so) 

or 

- T(so) £ 0, 

X 2 ^ R(so)-T(s0) ^ sup R(s)T(s), 
•Go. 

which is the desired result. 
To establish part (ii), we let h = sup 9^Ba\f(s)\. Then, for s £ £ « , 

l/«l , r ,„, .,, I/o' 
/& •/ Et 

dt 
Et ' ' ' 

S f I K(s, t)\dt = R(s) £ sup R(s). 
J Et *E^« 

A sequence of values {sn} can be found such that limn-oo|/(Sn)| 
= h. Then, clearly, 

lim |X | ]/M_ = i X | <; sup2î(j). 

Finally, consider 

M-i/(5)isr i^.oi- i /wi*. 
J Et 

file:///Hsdt
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We integrate both sides of this inequality over Es. The order of inte­
gration may be reversed, and we obtain, on interchanging the letters 
s and /, 

f | x | -\f(s)\ds£ f | / ( 5 ) | if \K(t,s)\dt\ds 
J Ea J E, \J Et J 

-l T(s)\f(s)\ds 
E8 

or 

/ 
JE, 

{.\\\-T{s))\f{s)\ds^0. 

Thus, for some s0, |X| ^T(s0) ^sup8£GtT(s)> which is the third in­
equality of Theorem 4. 

3. Concerning bounds. The literature dealing with estimation of 
characteristic values of finite matrices begins in 1900 with the work 
of Bendixson [2]. A well detailed account of results in this field up 
to 1939 is given by Browne [4]. In the bibliography below are listed 
most of the papers that have appeared since that time. One of the 
most effective results is the following, due to Schur [8]: if Xi, X2, 
• • • , Xn are the n characteristic roots of the matrix A = {ast), s} / = 1, 

2, • • • , n, then 

The equality holds if and only if A is normal. The corresponding 
bound is established for the integral equation (5) with G8 a finite 
interval and K continuous on GsXGt: 

Z | X , - | 2 ^ f f \K(sit)\Hsdt. 
1 J J G8XGt 

The sum on the left here is taken over all the reciprocal zeros (count­
ing multiplicities) of the Fredholm determinant of K. 

Schur's estimate and ours are best estimates, but with different 
ranges. There are, in fact, for each order n, matrices for which 

n 

w-max (R8T8) < £ | ast\\ 
(s) * , i= l 

the left member therefore affording a sharper bound for X)ï|X»|2- An 
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example is the matrix 

f 0 2 11 

10 0 0 . 

1 1 0 l ] 

For normal matrices, and for normal operators in Hubert space, 
Schurk global relations can be augmented by more detailed state­
ments concerning the location of individual characteristic values. 
Some results in this direction will be published by the author in the 
near future. 
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