
ON THE CONVEXITY OF MEAN VALUE FUNCTIONS 

HAROLD SHNIAD 

1. Introduction. Let (a) denote a set ai, a2, • • • , an of n distinct 
positive numbers, w ^ 2 , with the subscripts v labeled so that av<ay+i 
for J> = 1, • • • , n — 1. Let (£) denote a set of positive numbers 
%h fei • • • , £n with XX-1 & — 1' The mean value function Mt{(t, £) 
= ( 2 X i k * i ) l / l , ^ 0 , ±00 ; Mo(a, f ) - I I : . i ^ ; M^(af £) 
= minv„i>2,..-,n #* and Af+00(a, £) =maxya.i,2,...,n #»; is a continuous 
and strictly increasing function of / for — oo g/<£ + oo.1 For given 
fixed sets (a) and (£), let Jkf(/) denote Mt(a, £) and A(/) denote 
log Mt(a, £). Each of the functions M(t) and A(/) has horizontal 
asymptotes and consequently at least one point of inflection. We shall 
show that these functions may have more than one inflection point, 
but shall show that A(0 is a convex function of tin a neighborhood of 
— oo, and a concave function of I in a neighborhood of + oo. A suffi
cient condition will be obtained for A(/) to be convex for all negative 
/, and one for A(t) to be concave for all positive /. Finally, the ap
plicability of the methods used to more general weighted sums will 
be considered briefly. 

2. Notations and fundamental formulae. Let 

(1) ƒ(') 

(2) Vv(t) 

(3) Sk 

Then 

dt]v 
— • = ri9\, 
dt 
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^See Hardy, Littlewood, and Pólya, Inequalities, Cambridge University Press, 
1934, chap. 2, for the basic properties of the mean value function. 
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ƒ' = Si, 

ƒ = Si — Si, 

(4) ƒ'" - S, - 35iS2 + 2SÏ, 
yiv = 54 _ 45^3 _ 35* + i25iS2 _ 6S\, 

(5) ƒ " = (St - 3Sl + 25Î) - 45!/'". 

Since A(*)=log M(t)=f/(, we have 

(6) A<*> = (l/0(/Cfc) - JAt") ) ; 

letting £=3 in (6) and integrating, we obtain the result: 

(7) (tl)A"(h) = (tl)A"(h) + f hff"dt, 

or 

(8) tzA"(t) = f t2f"'dt and A"(0) = (l/3)/'"(0). 
J 0 

3. The function ƒ'"(/). The idea behind our analysis of the con
vexity or concavity of A(/) in certain ranges of t is to deduce results 
from corresponding properties of the relatively simpler function 
ƒ'"(/). By comparing formula (4) with the following expression: 

A"(*) = (l/f)(S2 - Si) - (2/t){Sx) + (2/*V, 

it may be seen that a direct study of A"(0 is considerably more 
complicated than that of f"(t). Formulae (7) and (8) will be used 
to pass from conclusions regarding the sign of ƒ'"(/) in an interval to 
similar conclusions regarding the sign of A"(/). 

Our analysis oif'"(t) will be that of a function: 

v«l \ v»l / L v~l J \ v»l / 

where the expressions rjy, X„ (v = 1, 2, • • • , n ; n à 2) are subject to the 
conditions: 

(a) X, is any fixed finite valued real number with X„<X„+i; 
(b) rjv~r]v(t) with T?„>0, X X i ^(O^l» and r\v{t) is a continuous 

function of t defined for all real /; 
(c) 771 is a strictly decreasing function of / and lim^-oo 771 = + 1 , 

lim^+00 77X = 0; 
(d) rjn is a strictly increasing function of / and lim t+-«> rjn — Of 

l im^+ 0 0 t?w=+l. 
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That ƒ" ' ( / ) is a function F(t) follows easily from formula (4) and 
the definitions (2) and (3). 

LEMMA. The function F(t) has the property that if each X„ is replaced 
by \,+c (c independent of v), then Fit) remains invariant. 

PROOF. Let Sk(t, c) = 2 X i ^(A„+c)*. Then 

àSk(t,c) dSi(f,c) 
= *5*-i(/, c), = 1, 

de de 
and 

— {Sz(ft c) - 35i(/, c)S*(t, c) + 2[5x(/, c)Y] = 0. 
dc 

THEOREM 1. (a) If rj^h) = 1/2, then t<h implies that F(t) > 0 . 
(b) If 77n(/2) = 1/2, tóew *>/a *m/>«« / t o P(/) < 0 . 
(c) We have F(h) = 0 if and only if n = 2; that is, if and only if 

t\ = /2. 

PROOF. Case 1, w = 2. We replace X, by X,,—X2 and obtain F(t) 
= (>7i-3^+27;?)(Xi-X2)3 = (1 -2Vl)N(t), where iV(/) <0 . Hence 
F(t)>0 for /< / i , since rji(t) is a strictly decreasing function of t. 

Case 2,n>2. Assume the theorem valid for all n satisfying 2^n^k 
and consider n — k + 1. Suppose that r}i(t)>l/2, and let d„=X„—X2. 
Then 

( fc+1 3 \ / fc+1 \ / 2 k+1
 2 \ 

m^i + 23 VÀP ) - 3 f lyidi + X) ^ ) ( vidi + 12 ^ " ) 
„=3 / \ y-8 / \ v=3 / 

( fc+1 \ 3 

^i^i + 23 Vvdv J 
j»«3 / 

= Px + P2 + Pz + P4, 
where 

P i == (>7i — 37]! + 2r/i)di, 

fc+i 3 / fc+i \ / fc+i A / *+i \ 3 

^2 = 23 ^ A — 3 f 23 Vvdv 1 ( 23 *7 A ) + 2 f 23 Vpdp ) , 
v-3 \ y=-3 / \ v=3 / \ v«3 / 

2 K 
P3 = 3T7I^I(2T7I — 1) 23 VÂvy 

v=3 

[ / k+1 v 2 fc+1 2 - | 

2 ( 23 ^ J ~ 23 ^ > ' 
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We have P i > 0 for 171 > 1/2, since di<0. 
If we regard the numbers 0, i3 , • • • , dk+i as X's and the numbers 

(771+772), 7̂3, • • • , yjc+i as weights, then the expression P 2 is a func
tion F(t) with n = k. Since (771+772) > 1/2 whenever 771 > 1/2, the in
duction hypothesis implies that P2X) . 

We h a v e P 3 > 0 since dv>0 for *> = 3, • • • , fe + 1. 
Cauchy's inequality gives: 

/ fc+l \ 2 / *+l A / *+l \ 1 / *+l A 

( X ) ^ ) ^ ( S ^ ) ( X) ^) < ~( Xw^)• 
\ ys»3 / \ »«3 / \ y«3 / 2 \ „«.3 / 

This inequality together with di<0 gives P4X) . This concludes the 
proof of part (a). 

If 771 = 1/2 and n>2, then Pi = P 3 = 0, P 2 > 0 and P 4 > 0 . Hence for 
n>2, we have F(h) > 0 . The rest of the theorem may be verified by 
using a similar procedure (for example, replace A„ by X„ — A^-i, and 
so on). 

4. The behavior of A"(/). We shall establish the following result: 

THEOREM 2. There exists a h such that t<h implies that A" ( / )>0 . 

PROOF. By Theorem 1 and the fact that 771 decreases continuously 
from plus 1 to 0, there is a value p such that ƒ" ' (£) = 0 and such that 
t<p implies ƒ ' " ( / ) > 0 . 

(a) If p>0, then A"(0 > 0 for all / on the range - 00 <t£p. Since 
A"(0) = ( l / 3 ) / ' " (0 ) , we have A " ( 0 ) > 0 . That A " ( / ) > 0 for all non
zero t on the given range follows from formula (8). 

(b) If £ = 0, then A"(0) > 0 for all negative /, and A"(0) = 0 . 
(c) If p<0 and A "(I) ^ 0 for some t<p, then from formula (7) we 

have A"(t)<0 for all t satisfying t<t^p. But A(/) is an increasing 
and bounded function of t. Hence for some h^p, A" ( / i )>0 and for 
such a h, Kh will imply that A"(0 > 0 . 

COROLLARY 1. There exists a h such that M{t) is convex for t^h. 

COROLLARY 2. If fcèl/2, then both A(t) and M(t) are convex f or 
all negative t. 

PROOF. Since 171(0) =&, the inequality f 1 ^ 1/2 implies that f "(t)>0 
for all negative t. The conclusion for K{t) follows from parts (a) and 
(b) of the proof of Theorem 2. Since the convexity of the logarithm of 
a function always implies the convexity of the function, the result 
for M(t) follows. 

The same methods may be used to prove: 



774 HAROLD SHNIAD [August 

THEOREM 2'. There exists a h such that t>h implies that A"(/) < 0 . 

COROLLARY 2'. If £ n è l / 2 , then A(/) is concave f or all positive t. 

THEOREM 3. Iff'"(t) has exactly one zero, then so does A"(/). 

PROOF. Let ƒ"'(*) = 0 . Then we have ƒ '"(/) > 0 for / < Jand ƒ"(*) < 0 
for t>I If / > 0 , the proofs of Theorems 2 and 2' show that A"(/) > 0 
on the range — <x> <t^t and that A"(t) has one zero on the range 
t<t< + oo. The other cases J = 0 and J < 0 are similar. 

5. Convex-concave functions. A function g(t) defined on the range 
— o o < / < + oois convex-concave providing there exists a point J such 
that g(t) is convex for / Si and concave for t^L 

The question may be raised whether either of the functions A(/) 
or M(t) is necessarily convex-concave. By Theorems 1 and 3 the 
answer is affirmative for A(/) in the case w = 2. We now develop an 
example to show that this conclusion regarding either A(/) or M(t) is 
not true for n>2. 

Consider the case av = ep (P = 1, 2, 3), £x = i-3<l/6, X„ = p. If X„ is 
replaced by X„+c, f'(t) is increased by c and every higher order deriva
tive of ƒ(/) remains invariant. Therefore, to calculate both /" '(O) 
and / I V (0 ) , the set (1, 2, 3) maybe replaced by the set ( - 1 , 0 , + 1 ) . 
We have that / ' "(O) is equal to — £i+£3 = 0 and, by formula (5), that 
fIV(0) is equal to (Ç1+J3) — 3(£i+£3)2>0. Therefore in a neighborhood 
of zero, f"(t) has the same sign as t. From formula (8), it follows 
that A"(/) agrees with ƒ '"(/) in sign throughout this neighborhood 
and consequently that k"(t) has at least three zeros. In particular 
for the mean value function M{t) = (Aet+.8e2t + A^t)1/t

t the follow
ing table shows that there are values t\ and /2 such that U<h and 
M"(h) <0<M"(t2) or that M(t) is not convex-concave. 

Table of M and its derivatives for M(t) = (.le*+.8e2<+.le301 / ' 

t 

M(t) 
M'{t) 
M"(t) 

-1 .2 

6.519 
0.7311 

-0.026 

-0 .8 

6.810 
0.7215 

-0.017 

-0 .4 

7.098 
0.7209 

+0.018 

0.0 

7.389 
0.7389 

+0.074 

6. Generalized weighted sums. Let (a) again denote a set of dis
tinct positive numbers and (£) a set of arbitrary posi
tive numbers £1, £2, • • • , £n, n^2. Consider the function 5*(<z, £) 
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= [ Z ? - l &oJ]>'» for t*0, ± 0 0 ; 

5o(*,ö-n<^ if Lfc-i; 

50(a, Ö = 0 if é f c ^ 1; 
y - 1 

S-oo(Gi £) == min <V> 
i"- l ,2 , . . . ,n 

and 
•S+oofa» Ö = max a„. 

y - l , 2 , . . . , n 

For fixed sets (a) and (£), the function St(a, £) is continuous for 
- 00 g / < 0 and for 0 < / ^ + oo. If X X 1 £„g l , then St(a9 Q is con
tinuous from the right at / = 0; and if X X 1 & = !> t n e n St(a, £) is 
continuous from the left at / = 0. However, if we define/, rjVf and Sk as 
in formulae (1), (2), and (3), then all of the results of §3 regarding 
ƒ '"(/) are valid without modification. Formula (7) will hold as long 
as h and h are both positive or both negative. 

THEOREM 4. (a) There is a point pi such that log St(a, £) is either a 
concave f unction of tfor all t<p% or a convex f unction f or all t<pu 

(b) There is a point p2 such that log St(a, £) is convex f or all t>p2, 
or concave for all t>p^ 

PROOF OF THEOREM 4a. Assume that for all p, log St(a, £) is not 
convex in the range — oo <t<p. Let pi<0 be such that t<p\ implies 
that ƒ ' " ( / )>( ) . Consider any number U<p\. Then, by assumption, 
d2 log St(a, l*)/dt2<0 has a solution for some t'<t0. Formula (7) 
implies that this second derivative is negative for all / satisfying 
t'<t^pu or that log St(a, £) is concave for all tSp\> 

The proof of Theorem 4b is similar. 
To show the applicability of Theorem 4 consider a function St{a, £) 

where X X I & < 1 . For all such sets (£) and for every set (a), the 
function St(a, £) has the following properties: 

(a) h<h and hh>0 imply that Sh(a, (•) <Sh(a, £); 
(b) minv«i,2f...,n ay<St(a, £) for / < 0 ; 
(c) S*(a, J) <maxM,2 (...,» #* for / > 0 . 

Hence there is no point p such that t<p implies that log St(a, £) is 
concave nor a point p such that t >p implies that log S*(a, £) is convex. 
We conclude from Theorem 4 that if X X i £>< *> l°g &((*, £) *s convex 
in a neighborhood of — oo and concave in a neighborhood of + oo. 
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If & ^ 1 for each v, then by reasoning analogous to that of the pre
ceding example, it may be shown, for any set (a), that there is no 
point p such that t<p implies that log St{a, £) is convex nor a point 
p such that t>p implies that log St(a, £) is concave. Hence Theorem 4 
applies to all such functions log St(a, £). However, for this case the 
conclusion of the general theorem is weaker than the known result 
that log St(a, £) is convex for all positive t and concave for all nega
tive L2 

UNIVERSITY OF CALIFORNIA AT LOS ANGELES 

2 See Beckenbach, An inequality of Jensen, Amer. Math. Monthly vol. 53 (1946) 
pp. 501-505. 

HOMOMORPHISMS ON BANACH SPACES 

M. E. MUNROE 

1. Introduction. Let £ be a Banach space and E* its conjugate 
space. Let G be a closed linear subspace of E, and let T = {ƒ|ƒ£E*, 
f(x) = 0 for x g G J . Krein and Smulian have shown [4, Theorem 12']1 

that G * = E * / r in the sense that the two spaces are algebraically 
isomorphic and that the usual definitions of norm in the two are 
equivalent. Noting the algebraic isomorphism, let us look at the topo
logical aspects of this equivalence in a slightly different light. G* being 
a factor space of E*, there is defined a natural homomorphism [5, 
p. 64] r (E*)=G*. Since they are using the induced topology [5, p. 
58] in E*/T, Krein and Smulian prove what is equivalent to the 
theorem that the transformation T is continuous and open (see [S, 
Theorem 12]). Stated in this way, incidentally, the result follows im
mediately from the Hahn-Banach theorem by means of the usual 
neighborhood argument for continuity and openness. 

However, the homomorphism T(E*) = G* suggests other topo
logical questions the answers to which are not quite so obvious. 
Specifically, what are the topological properties of T when E* and G* 
are given topologies other than their norm topologies? 

The conjugate to a Banach space may be topologized in any one 
of several well known ways. The most common such topologies are 
the norm, weak, weak*, bounded weak and bounded weak*. We shall 
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1 Numbers in brackets refer to the bibliography at the end of the paper. 


