THE EXTENSION OF A HOMEOMORPHISM DEFINED ON THE BOUNDARY OF A 2-MANIFOLD

J. W. T. YOUNGS¹

1. Introduction. Suppose that M and \mathfrak{M} are homeomorphic 2-manifolds with boundaries B and \mathfrak{B} , respectively. Then $B(\mathfrak{B})$ is the union of a collection J_1, \dots, J_n $(\mathfrak{F}_1, \dots, \mathfrak{F}_n), n > 0$, of Jordan curves which are disjoint in pairs. Suppose h is a homeomorphism from B onto \mathfrak{B} . (It may be assumed that $h(J_i) = \mathfrak{F}_i, i = 1, \dots, n$.) It is the purpose of this paper to investigate the possibility of *extending* the homeomorphism h so as to obtain a homeomorphism from M onto \mathfrak{M} .

It will be shown that, if M (and therefore \mathfrak{M}) is orientable, then h cannot always be extended unless n=1. (A necessary and sufficient condition for the extendability is given in Theorem 1.) If M (and therefore \mathfrak{M}) is non-orientable, then the extension is always possible a result which, at first glance, may appear rather implausible.

These results are generalizations of the Schoenflies theorem $[2, p. 324]^2$ and, astonishingly enough, do not appear to have been mentioned elsewhere. It is possible that they may serve as instruments in generalizing an extension theorem of Adkisson and MacLane [1]from a statement involving 2-spheres to one concerned with 2-manifolds. In any event, the theorems will be employed in the representation problem for Fréchet surfaces in a manner comparable to that by which a similar theorem was used to obtain a partial solution (Youngs [4]).

2. The theorems. Using the notation of the introduction, suppose that M is orientable. A concordant orientation of (J_1, \dots, J_n) consists of an orientation on each Jordan curve, J_1, \dots, J_n , such that the orientation induced on M by the orientation on J_i is independent of $i=1, \dots, n$; or, in other words, there is an orientation on M such that $J_1 + \dots + J_n$ (J_i regarded as a cycle, $i=1, \dots, n$) is the algebraic boundary of M. Hence each concordant orientation of (J_1, \dots, J_n) determines an orientation on M; namely, the orientation on M determines a concordant orientation of (J_1, \dots, J_n) ; the orientation on J_i being induced by the orientation on M, $i=1, \dots, n$.

Presented to the Society, September 4, 1947; received by the editors September 4, 1947.

¹ Fellow of the John Simon Guggenheim Memorial Foundation.

² Numbers in brackets refer to the bibliography.

Thus there are two concordant orientations of (J_1, \dots, J_n) ; given one, the other is obtained by reversing the orientation on J_i , $i=1, \dots, n$.

Now consider the homeomorphism h and select a concordant orientation of (J_1, \dots, J_n) . Then J_i is oriented and $h | J_i$ (that is, hrestricted to J_i) determines an orientation on \mathfrak{F}_i , $i=1, \dots, n$. This selection of orientations may or may not be a concordant orientation of $(\mathfrak{F}_1, \dots, \mathfrak{F}_n)$. If it is, then h is said to carry a concordant orientation of (J_1, \dots, J_n) into a concordant orientation of $(\mathfrak{F}_1, \dots, \mathfrak{F}_n)$. It is obvious that if h carries one of the two concordant orientations of (J_1, \dots, J_n) into a concordant orientation of $(\mathfrak{F}_1, \dots, \mathfrak{F}_n)$, then it carries the other concordant orientation of (J_1, \dots, J_n) into the second concordant orientation of $(\mathfrak{F}_1, \dots, \mathfrak{F}_n)$.

Now suppose that the homeomorphism h can be extended so as to obtain a homeomorphism $h^*: M \rightarrow \mathfrak{M}$. (The heavy arrow indicates that the mapping is from M onto \mathfrak{M}). Select an orientation on M and consider the concordant orientation of (J_1, \dots, J_n) determined by the orientation on M. The homeomorphism $h | J_i$ induces an orientation on \mathfrak{F}_i , $i=1, \dots, n$, while the homeomorphism h^* induces an orientation on \mathfrak{M} . It follows that this orientation on \mathfrak{M} induces an orientation on \mathfrak{F}_i which is precisely that induced by $h | J_i, i=1, \dots, n$. Consequently the orientation induced on \mathfrak{F}_i by $h | J_i, i=1, \dots, n$, yields a concordant orientation of $(\mathfrak{F}_1, \dots, \mathfrak{F}_n)$. In other words, htakes a concordant orientation of (J_1, \dots, J_n) into a concordant orientation of $(\mathfrak{F}_1, \dots, \mathfrak{F}_n)$. Thus half of the first theorem listed below has been proved.

THEOREM 1. If M and \mathfrak{M} are homeomorphic orientable 2-manifolds with boundaries $B = J_1 \cup \cdots \cup J_n$ and $\mathfrak{B} = \mathfrak{F}_1, \cup \cdots \cup \mathfrak{F}_n$ respectively (n > 0), then a homeomorphism $h: B \rightarrow \mathfrak{B}$ can be extended to a homeomorphism $h^*: M \rightarrow \mathfrak{M}$ if, and only if, h carries a concordant orientation of (J_1, \cdots, J_n) into a concordant orientation of $(\mathfrak{F}_1, \cdots, \mathfrak{F}_n)$.

THEOREM 2. If M and \mathfrak{M} are homeomorphic non-orientable 2-manifolds with boundaries $B = J_1 \cup \cdots \cup J_n$ and $\mathfrak{B} = \mathfrak{P}_1 \cup \cdots \cup \mathfrak{P}_n$ respectively (n>0), then a homeomorphism $h: B \rightarrow \mathfrak{B}$ can always be extended to a homeomorphism $h^*: M \rightarrow \mathfrak{M}$.

PROOF OF THEOREM 1. The sufficiency of the condition needs to be established. Assuming that $h(J_i) = \mathfrak{F}_i$, $i = 1, \dots, n$, let M^* and \mathfrak{M}^* be the closed orientable 2-manifolds obtained by adjoining 2-cells to the bounding curves J_1, \dots, J_n and $\mathfrak{F}_1, \dots, \mathfrak{F}_n$. These mani-

folds are obviously homeomorphic; suppose that their 1-dimensional Betti number is $2j, j \ge 0$. By a suitable cutting of $M^*(\mathfrak{M}^*)$ one obtains the fundamental polygon $P^*:AA^{-1}(\mathfrak{P}^*:\mathfrak{A}\mathfrak{A}^{-1})$, if j=0, or $P^*:A_1B_1A_1^{-1}B_1^{-1}\cdots A_jB_jA_j^{-1}B_j^{-1}(\mathfrak{P}^*:\mathfrak{A}_1\mathfrak{B}_1\mathfrak{A}_1^{-1}\mathfrak{B}_1^{-1}\cdots \mathfrak{A}_j\mathfrak{B}_j\mathfrak{A}_j^{-1}\mathfrak{B}_j^{-1})$, if j>0, and the Jordan curves $J_1, \cdots, J_n(\mathfrak{P}_1, \cdots, \mathfrak{P}_n)$ are interior to $P^*(\mathfrak{P}^*)$. (See Seifert-Trelfall [3, chap. VI].) Let $J_{n+1}(\mathfrak{P}_{n+1})$ be the Jordan curve boundary of $P^*(\mathfrak{P}^*)$ and $P'(\mathfrak{P}')$ be the 2-manifold obtained from $P^*(\mathfrak{P}^*)$ by omitting the interiors of the 2-cells bounded by $J_1, \cdots, J_n(\mathfrak{P}_1, \cdots, \mathfrak{P}_n)$.

Select an orientation on P' and consider the induced orientations on J_1, \dots, J_{n+1} . The mapping $h | J_i$ induces an orientation on \mathfrak{F}_i , $i=1, \dots, n$. It follows from the hypothesis that the orientation on \mathfrak{F}' induced by \mathfrak{F}_i is independent of $i=1, \dots, n$. Consider \mathfrak{F}_{n+1} to be given the orientation induced by the above orientation on \mathfrak{F}' . It may be assumed that the order $\mathfrak{A}\mathfrak{A}^{-1}$, if j=0, or $\mathfrak{A}_1\mathfrak{B}_1\mathfrak{A}_1^{-1}\mathfrak{B}_1^{-1}\cdots$ $\mathfrak{A}_j\mathfrak{B}_j\mathfrak{A}_j^{-1}\mathfrak{B}_j^{-1}$, if j>0, agrees with the orientation on \mathfrak{F}_{n+1} , and that the order AA^{-1} , if j=0, or $A_1B_1A_1^{-1}B_1^{-1}\cdots A_jB_jA_j^{-1}B_j^{-1}$, if j>0, agrees with the orientation on J_{n+1} .

If j = 0 select the vertex v(v) which is the first point of $A(\mathfrak{A})$. If j > 0select the vertex v(v) which is the first point of $A_1(\mathfrak{A}_1)$. Let $x_i \in J_i$ and $\mathfrak{x}_i = h(x_i) \in \mathfrak{Y}_i, i = 1, \dots, n$. It follows that there are arcs Q_1, \dots, Q_n $(\mathfrak{Q}_1, \cdots, \mathfrak{Q}_n)$ from v to x_1, \cdots, x_n (\mathfrak{v} to $\mathfrak{x}_1, \cdots, \mathfrak{x}_n$) respectively, such that: 1°. $Q_i \cap Q_k = v$ $(\mathfrak{Q}_i \cap \mathfrak{Q}_k = \mathfrak{v}), i \neq k; i, k = 1, \dots, n.$ 2°. If $P'(\mathfrak{P}')$ is cut along these arcs then one obtains the polygon $P:Q_1J_1Q_1^{-1}\cdots Q_nJ_nQ_n^{-1}AA^{-1} \quad (\mathfrak{P}:\mathfrak{Q}_1\mathfrak{P}_1\mathfrak{Q}_1^{-1}\cdots \mathfrak{Q}_n\mathfrak{P}_n\mathfrak{Q}_n^{-1}\mathfrak{A}\mathfrak{A}^{-1}), \text{ if }$ is the fundamental polygon for $M(\mathfrak{M})$ and it is to be noted that the oriented boundary arcs J_1, \dots, J_n $(\mathfrak{F}_1, \dots, \mathfrak{F}_n)$ are found in the order of increasing indices in the above array. It follows that the homeomorphism h carrying J_i onto \mathfrak{P}_i , $i=1, \cdots, n$, can be extended to a homeomorphism h from the boundary of P onto the boundary of \mathfrak{P} in such a manner that if x and y are to be identified by the identification mapping which obtains M from P, then h(x)and h(y) are identified by the identification mapping which obtains M from P.

Now by the Schoenflies theorem there is an extension h^* of h which maps P homeomorphically onto \mathfrak{P} . The homeomorphism h^* of the theorem is simply the above h^* considered as a mapping from M onto \mathfrak{M} .

PROOF OF THEOREM 2. Assuming that $h(J_i) = \mathfrak{F}_i$, $i = 1, \dots, n$, let M^* and \mathfrak{M}^* be the closed non-orientable 2-manifolds obtained by

1948]

adjoining 2-cells to the boundary curves J_1, \dots, J_n and $\mathfrak{F}_1, \dots, \mathfrak{F}_n$. These manifolds are homeomorphic; suppose that their 1-dimensional Betti number is (k-1), k > 0. By a suitable cutting of $M^*(\mathfrak{M}^*)$ one obtains the fundamental polygon $P^*:A_1A_1 \dots A_kA_k$ ($\mathfrak{P}^*:\mathfrak{A}_1\mathfrak{A}_1$ $\dots \mathfrak{A}_k\mathfrak{A}_k$) and the Jordan curves J_1, \dots, J_n ($\mathfrak{F}_1, \dots, \mathfrak{F}_n$) are interior to $P^*(\mathfrak{P}^*)$. (See Seifert-Trelfall [3, chap. VI].)

Consider a fixed orientation on P^* . This determines an orientation on J_i , and the homeomorphism $h | J_i$ induces an orientation on \mathfrak{F}_i , which, in turn, determines an orientation on \mathfrak{F}^* , $i = 1, \dots, n$. If this

orientation on \mathfrak{P}^* is independent of $i=1, \cdots, n$, then it is readily seen that the proof can be completed as in Theorem 1. Suppose, therefore, that the orientations on $\mathfrak{P}_1, \cdots, \mathfrak{P}_m$ (m < n) determine one orientation on \mathfrak{P}^* while those on $\mathfrak{P}_{m+1}, \cdots, \mathfrak{P}_n$ determine the other. There is a cross cut \mathfrak{A}'_1 of \mathfrak{P}^* joining the first point of \mathfrak{A}_1 to the last point of \mathfrak{A}_1 and separating $\mathfrak{P}_1 \cup \cdots \cup \mathfrak{P}_m$ from $\mathfrak{P}_{m+1} \cup \cdots \cup \mathfrak{P}_n$. (See Fig. 1.) Cut \mathfrak{P}^* along \mathfrak{A}'_1 and identify the points of the two arcs labelled \mathfrak{A}_1 to obtain Fig. 2. Notice that in doing this one obtains the fundamental polygon $\mathfrak{P}': \mathfrak{A}'_1 \mathfrak{A}'_1 \mathfrak{A}_2 \mathfrak{A}_2 \cdots \mathfrak{A}_k \mathfrak{A}_k$ of \mathfrak{M}^* and \mathfrak{P}_i now determines an orientation on \mathfrak{P}' which is independent of $i=1, \cdots, n$. The proof is completed as in Theorem 1.

BIBLIOGRAPHY

1. V. W. Adkisson and Saunders MacLane, Extending maps of plane Peano continua, Duke Math. J. vol. 6 (1940) pp. 216-228.

2. A. Schoenflies, Betrage zur Theorie der Punktmengen. III, Math. Ann. vol. 62 (1906) pp. 286-328.

3. H. Seifert and W. Trelfall, Lehrbuch der Topologie, Leipzig, 1943.

4. J. W. T. Youngs, The topological theory of Fréchet surfaces, Ann. of Math. vol. 45 (1944) pp. 753-785.

INDIANA UNIVERSITY

[August