THE EXTENSION OF A HOMEOMORPHISM DEFINED ON THE BOUNDARY OF A 2-MANIFOLD

J. W. T. YOUNGS ${ }^{1}$

1. Introduction. Suppose that M and \mathfrak{M} are homeomorphic 2-manifolds with boundaries B and \mathfrak{B}, respectively, Then $B(\mathfrak{F})$ is the union of a collection $J_{1}, \cdots, J_{n}\left(\Im_{1}, \cdots, \Im_{n}\right), n>0$, of Jordan curves which are disjoint in pairs. Suppose h is a homeomorphism from B onto \mathfrak{B}. (It may be assumed that $h\left(J_{i}\right)=\Im_{i}, i=1, \cdots, n$.) It is the purpose of this paper to investigate the possibility of extending the homeomorphism h so as to obtain a homeomorphism from M onto \mathfrak{M}.

It will be shown that, if M (and therefore \mathfrak{M}) is orientable, then h cannot always be extended unless $n=1$. (A necessary and sufficient condition for the extendability is given in Theorem 1.) If M (and therefore \mathfrak{M}) is non-orientable, then the extension is always possiblea result which, at first glance, may appear rather implausible.

These results are generalizations of the Schoenflies theorem [2, p. $324]^{2}$ and, astonishingly enough, do not appear to have been mentioned elsewhere. It is possible that they may serve as instruments in generalizing an extension theorem of Adkisson and MacLane [1] from a statement involving 2 -spheres to one concerned with 2 -manifolds. In any event, the theorems will be employed in the representation problem for Fréchet surfaces in a manner comparable to that by which a similar theorem was used to obtain a partial solution (Youngs [4]).
2. The theorems. Using the notation of the introduction, suppose that M is orientable. A concordant orientation of $\left(J_{1}, \cdots, J_{n}\right)$ consists of an orientation on each Jordan curve, J_{1}, \cdots, J_{n}, such that the orientation induced on M by the orientation on J_{i} is independent of $i=1, \cdots, n$; or, in other words, there is an orientation on M such that $J_{1}+\cdots+J_{n}\left(J_{i}\right.$ regarded as a cycle, $\left.i=1, \cdots, n\right)$ is the algebraic boundary of M. Hence each concordant orientation of (J_{1}, \cdots, J_{n}) determines an orientation on M; namely, the orientation induced by J_{i} for any $i=1, \cdots, n$. Conversely each orientation on M determines a concordant orientation of (J_{1}, \cdots, J_{n}); the orientation on J_{i} being induced by the orientation on $M, i=1, \cdots, n$.

[^0]Thus there are two concordant orientations of $\left(J_{1}, \cdots, J_{n}\right)$; given one, the other is obtained by reversing the orientation on J_{i}, $i=1, \cdots, n$.

Now consider the homeomorphism h and select a concordant orientation of $\left(J_{1}, \cdots, J_{n}\right)$. Then J_{i} is oriented and $h \mid J_{i}$ (that is, h restricted to J_{i}) determines an orientation on $\Im_{i}, i=1, \cdots, n$. This selection of orientations may or may not be a concordant orientation of ($\left.\Im_{1}, \cdots, \Im_{n}\right)$. If it is, then h is said to carry a concordant orientation of $\left(J_{1}, \cdots, J_{n}\right)$ into a concordant orientation of $\left(\Im_{1}, \cdots, \Im_{n}\right)$. It is obvious that if h carries one of the two concordant orientations of $\left(J_{1}, \cdots, J_{n}\right)$ into a concordant orientation of ($\left.\Im_{1}, \cdots, \Im_{n}\right)$, then it carries the other concordant orientation of $\left(J_{1}, \cdots, J_{n}\right)$ into the second concordant orientation of (\Im_{1}, \cdots, \Im_{n}).

Now suppose that the homeomorphism h can be extended so as to obtain a homeomorphism $h^{*}: M \rightarrow \mathfrak{M}$. (The heavy arrow indicates that the mapping is from M onto \mathfrak{M}). Select an orientation on M and consider the concordant orientation of (J_{1}, \cdots, J_{n}) determined by the orientation on M. The homeomorphism $h \mid J_{i}$ induces an orientation on $\mathfrak{J}_{i}, i=1, \cdots, n$, while the homeomorphism h^{*} induces an orientation on \mathfrak{M}. It follows that this orientation on \mathfrak{M} induces an orientation on \Im_{i} which is precisely that induced by $h \mid J_{i}, i=1, \cdots, n$. Consequently the orientation induced on \mathfrak{Y}_{i} by $h \mid J_{i}, i=1, \cdots, n$, yields a concordant orientation of ($\mathfrak{S}_{1}, \cdots, \mathfrak{Y}_{n}$). In other words, h takes a concordant orientation of (J_{1}, \cdots, J_{n}) into a concordant orientation of ($\mathfrak{Y}_{1}, \cdots, \mathfrak{Y}_{n}$). Thus half of the first theorem listed below has been proved.

Theorem 1. If M and \mathfrak{M} are homeomorphic orientable 2-manifolds with boundaries $B=J_{1} \cup \cdots \cup J_{n}$ and $\mathfrak{B}=\mathfrak{Y}_{1}, \cup \cdots \cup \Im_{n}$ respectively $(n>0)$, then a homeomorphism $h: B \rightarrow \mathfrak{B}$ can be extended to a homeomorphism $h^{*}: M \rightarrow \mathfrak{M}$ if, and only if, h carries a concordant orientation of (J_{1}, \cdots, J_{n}) into a concordant orientation of $\left(\Im_{1}, \cdots, \Im_{n}\right)$.

Theorem 2. If M and \mathfrak{M} are homeomorphic non-orientable 2-manifolds with boundaries $B=J_{1} \cup \cdots \cup J_{n}$ and $\mathfrak{B}=\mathfrak{Y}_{1} \cup \cdots \cup \Im_{n}$ respectively ($n>0$), then a homeomorphism $h: B \rightarrow \mathfrak{B}$ can always be extended to a homeomorphism $h^{*}: M \rightarrow \mathfrak{M}$.

Proof of theorem 1. The sufficiency of the condition needs to be established. Assuming that $h\left(J_{i}\right)=\Im_{i}, i=1, \cdots, n$, let M^{*} and \mathfrak{M}^{*} be the closed orientable 2 -manifolds obtained by adjoining 2 -cells to the bounding curves J_{1}, \cdots, J_{n} and \Im_{1}, \cdots, \Im_{n}. These mani-
folds are obviously homeomorphic; suppose that their 1-dimensional Betti number is $2 j, j \geqq 0$. By a suitable cutting of $M^{*}\left(\mathfrak{M}^{*}\right)$ one obtains the fundamental polygon $P^{*}: A A^{-1}\left(\mathfrak{B}^{*}: \mathfrak{A} \mathfrak{H}^{-1}\right)$, if $j=0$, or $P^{*}: A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \cdots A_{j} B_{j} A_{j}^{-1} B_{j}^{-1}\left(\mathfrak{P}^{*}: \mathfrak{A}_{1} \mathfrak{B}_{1} \mathfrak{U}_{1}^{-1} \mathfrak{B}_{1}^{-1} \cdots \mathfrak{H}_{j} \mathfrak{R}_{j} \mathfrak{U}_{j}^{-1} \mathfrak{B}_{j}^{-1}\right)$, if $j>0$, and the Jordan curves $J_{1}, \cdots, J_{n}\left(\Im_{1}, \cdots, \Im_{n}\right)$ are interior to P^{*} (\mathfrak{P}^{*}). (See Seifert-Trelfall [3, chap. VI].) Let $J_{n+1}\left(\Im_{n+1}\right)$ be the Jordan curve boundary of $P^{*}\left(\mathfrak{P}^{*}\right)$ and $P^{\prime}\left(\mathfrak{P}^{\prime}\right)$ be the 2 -manifold obtained from $P^{*}\left(\mathfrak{P}^{*}\right)$ by omitting the interiors of the 2-cells bounded by $J_{1}, \cdots, J_{n}\left(\Im_{1}, \cdots, \Im_{n}\right)$.

Select an orientation on P^{\prime} and consider the induced orientations on J_{1}, \cdots, J_{n+1}. The mapping $h \mid J_{i}$ induces an orientation on \Im_{i}, $i=1, \cdots, n$. It follows from the hypothesis that the orientation on \mathfrak{F}^{\prime} induced by \Im_{i} is independent of $i=1, \cdots, n$. Consider \Im_{n+1} to be given the orientation induced by the above orientation on \mathfrak{B}^{\prime}. It may be assumed that the order $\mathfrak{A H}^{-1}$, if $j=0$, or $\mathfrak{Y}_{1} \mathfrak{B}_{1} \mathfrak{H}_{1}^{-1} \mathfrak{B}_{1}^{-1} \ldots$ $\mathfrak{A}_{j} \mathfrak{P}_{j} \mathfrak{U}_{j}^{-1} \mathfrak{B}_{j}^{-1}$, if $j>0$, agrees with the orientation on \Im_{n+1}, and that the order $A A^{-1}$, if $j=0$, or $A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \cdots A_{j} B_{j} A_{j}^{-1} B_{j}^{-1}$, if $j>0$, agrees with the orientation on J_{n+1}.

If $j=0$ select the vertex $v(\mathfrak{b})$ which is the first point of $A(\mathfrak{H})$. If $j>0$ select the vertex $v(\mathfrak{b})$ which is the first point of $A_{1}\left(\mathfrak{H}_{1}\right)$. Let $x_{i} \in J_{i}$ and $\mathfrak{x}_{i}=h\left(x_{i}\right) \in \Im_{i}, i=1, \cdots, n$. It follows that there are $\operatorname{arcs} Q_{1}, \cdots, Q_{n}$ $\left(\mathfrak{Q}_{1}, \cdots, \mathfrak{Q}_{n}\right)$ from v to $x_{1}, \cdots, x_{n}\left(\mathfrak{v}\right.$ to $\left.\mathfrak{x}_{1}, \cdots, \mathfrak{x}_{n}\right)$ respectively, such that: $1^{\circ} . Q_{i} \cap Q_{k}=v\left(\mathfrak{Q}_{i} \cap \mathfrak{Q}_{k}=\mathfrak{b}\right), i \neq k ; i, k=1, \cdots, n .2^{\circ}$. If $P^{\prime}\left(\mathfrak{P}^{\prime}\right)$ is cut along these arcs then one obtains the polygon $P: Q_{1} J_{1} Q_{1}^{-1} \cdots Q_{n} J_{n} Q_{n}^{-1} A A^{-1}\left(\mathfrak{F}: \mathfrak{Q}_{1} \Im_{1} \mathfrak{Q}_{1}^{-1} \cdots \mathfrak{Q}_{n} \Im_{n} \mathfrak{Q}_{n}^{-1} \mathfrak{M} \mathcal{H}^{-1}\right)$, if $j=0$, or $P: Q_{1} J_{1} Q_{1}^{-1} \cdots Q_{n} J_{n} Q_{n}^{-1} A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \cdots A_{j} B_{j} A_{j}^{-1} B_{j}^{-1} \quad(\mathfrak{B}$ $\left.: \mathfrak{O}_{1} \mathfrak{Y}_{1} \mathfrak{Q}_{1}^{-1} \cdots \mathfrak{Q}_{n} \Im_{n} \mathfrak{O}_{n}^{-1} A_{1} \mathfrak{B}_{1} \mathfrak{N}_{1}^{-1} \mathfrak{B}_{1}^{-1} \cdots \mathfrak{U}_{j} \mathfrak{R}_{j} \mathfrak{N}_{j}^{-1} \mathfrak{R}_{j}^{-1}\right)$, if $j>0$. This is the fundamental polygon for $M(\mathfrak{M})$ and it is to be noted that the oriented boundary $\operatorname{arcs} J_{1}, \cdots, J_{n}\left(\Im_{1}, \cdots, \Im_{n}\right)$ are found in the order of increasing indices in the above array. It follows that the homeomorphism h carrying J_{i} onto $\Im_{i}, i=1, \cdots, n$, can be extended to a homeomorphism h from the boundary of P onto the boundary of \mathfrak{B} in such a manner that if x and y are to be identified by the identification mapping which obtains M from P, then $h(x)$ and $h(y)$ are identified by the identification mapping which obtains \mathfrak{M} from \mathfrak{B}.

Now by the Schoenflies theorem there is an extension h^{*} of h which maps P homeomorphically onto \mathfrak{P}. The homeomorphism h^{*} of the theorem is simply the above h^{*} considered as a mapping from M onto \mathfrak{M}.

Proof of Theorem 2. Assuming that $h\left(J_{i}\right)=\Im_{i}, i=1$, $\cdot \cdots, n$, let M^{*} and \mathfrak{M}^{*} be the closed non-orientable 2-manifolds obtained by
adjoining 2 -cells to the boundary curves J_{1}, \cdots, J_{n} and \Im_{1}, \cdots, \Im_{n}. These manifolds are homeomorphic; suppose that their 1 -dimensional Betti number is $(k-1), k>0$. By a suitable cutting of $M^{*}\left(\mathfrak{M}^{*}\right)$ one obtains the fundamental polygon $P^{*}: A_{1} A_{1} \cdots A_{k} A_{k}\left(\mathfrak{P}^{*}: \mathfrak{Y}_{1} \mathfrak{H}_{1}\right.$ $\left.\cdots \mathfrak{Y}_{k} \mathcal{Y}_{k}\right)$ and the Jordan curves $J_{1}, \cdots, J_{n}\left(\Im_{1}, \cdots, \Im_{n}\right)$ are interior to $P^{*}\left(\mathfrak{P}^{*}\right)$. (See Seifert-Trelfall [3, chap. VI].)

Consider a fixed orientation on P^{*}. This determines an orientation on J_{i}, and the homeomorphism $h \mid J_{i}$ induces an orientation on \Im_{i}, which, in turn, determines an orientation on $\mathfrak{B}^{*}, i=1, \cdots, n$. If this

Fig. 1

Fig. 2
orientation on \mathfrak{P}^{*} is independent of $i=1, \cdots, n$, then it is readily seen that the proof can be completed as in Theorem 1. Suppose, therefore, that the orientations on $\Im_{1}, \cdots, \Im_{m}(m<n)$ determine one orientation on \mathfrak{B}^{*} while those on $\Im_{m+1}, \cdots, \Im_{n}$ determine the other. There is a cross cut $\mathfrak{N}_{1}^{\prime}$ of \mathfrak{P}^{*} joining the first point of \mathfrak{N}_{1} to the last point of \mathfrak{N}_{1} and separating $\Im_{1} \cup \cdots \cup \Im_{m}$ from $\Im_{m+1} \cup \cdots \cup \Im_{n}$. (See Fig. 1.) Cut \mathfrak{B}^{*} along $\mathfrak{A}_{1}^{\prime}$ and identify the points of the two arcs labelled \mathfrak{N}_{1} to obtain Fig. 2. Notice that in doing this one obtains the fundamental polygon $\mathfrak{P}^{\prime}: \mathfrak{U}_{1}^{\prime} \mathfrak{A}_{1}^{\prime} \mathfrak{H}_{2} \mathfrak{U}_{2} \cdots \cdot \mathfrak{N}_{k} \mathfrak{H}_{k}$ of \mathfrak{M}^{*} and \mathfrak{Y}_{i} now determines an orientation on \mathfrak{B}^{\prime} which is independent of $i=1, \cdots, n$. The proof is completed as in Theorem 1.

Bibliography

1. V. W. Adkisson and Saunders MacLane, Extending maps of plane Peano continua, Duke Math. J. vol. 6 (1940) pp. 216-228.
2. A. Schoenflies, Betrage zur Theorie der Punktmengen. III, Math. Ann. vol. 62 (1906) pp. 286-328.
3. H. Seifert and W. Trelfall, Lehrbuch der Topologie, Leipzig, 1943.
4. J. W. T. Youngs, The topological theory of Fréchet surfaces, Ann. of Math. vol. 45 (1944) pp. 753-785.
[^1]
[^0]: Presented to the Society, September 4, 1947; received by the editors September 4, 1947.
 ${ }^{1}$ Fellow of the John Simon Guggenheim Memorial Foundation.
 ${ }^{2}$ Numbers in brackets refer to the bibliography.

[^1]: Indiana University

