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1. Introduction. The Picard-Vessiot theory, as recently reformu
lated by the author,1 deals with an abstract ordinary differential 
field J of characteristic 0 having an algebraically closed field of con
stants Q, and a differential extension field Ç over J with the two 
properties : 

(a) There exists a homogeneous linear differential polynomial 
L(y)=y(n)+piy(n~l)+ • • • +pny (each pi in J) which has a funda
mental system of solutions rju • • • , rjn such that Ç=7(riu ' ' * » Vn );2 

(b) The field of constants of Ç is Q. 
Such a Ç is called a Picard- Vessiot extension of y. I t is to be noted 

that the extension Ç is given, and the existence of the differential 
polynomial L(y) with the properties (a) and (b) is postulated. I t is 
not immediately apparent, and it would be of interest to know, 
whether a given L(y), with coefficients pi in y, always has a funda
mental system of solutions 771, • • • , t\n such that y(vu ' * * > Vn ) is 
a Picard-Vessiot extension of y (that is, contains no constant not in 
g ) . This question was posed by R. Baer (in his critical note on the 
then current status of the Picard-Vessiot theory, included among 
comments by O. Haupt in F. Klein's Vorlesungen über hypergeo
metrische Funktionen, Berlin, 1933), who remarked that the difficulty 
lay not in proving the existence of a fundamental system of solutions 
(see PV, §15), but in proving the existence of one which brings in no 
new constants. 

A differential extension field 5C of y may be an extension of y by 
integrals, exponentials of integrals, and algebraic functions. If it is, 
and if the field of constants of 3C is still Ç, then 3C is called a liouvillian 
extension of y. The Picard-Vessiot theory provides a group-theoretic 
answer to the question of when a Picard-Vessiot extension Ç of y is 

Presented to the Society, April 17,1948; received by the editors November 7,1947. 
1 Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear 

ordinary differential equations, Ann. of Math. (2) vol. 49 (1948) pp. 1-42. This 
paper, referred to below as "PV", contains the necessary background for the present 
note. 

2 The notation y< • • • ) indicates, as usual, differential field adjunction. Thus 
y {"Ht * ' * » Vn) is the differential field consisting of all differential rational functions 
of vu ' * • » Vn with coefficients in y. 
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(contained in) a liouvillian extension 5C (PV, §25). It is natural to 
broaden this question in two respects: first, by relinquishing the re
quirement that the field of constants of 3C be Q (that is, by demanding 
only that 3C be an extension of J by integrals, exponentials of inte
grals, and algebraic functions, without demanding that 3C be liouvil
lian) ; second, by inquiring whether or not L(y) has at least one solu
tion contained in such an extension 3C. 

It is the purpose of the present note to show how answers to the 
points raised in the two preceding paragraphs can be obtained (see 
Theorems 2 and 4, below) as corollaries to a general theorem on alge
braic differential equations due to J. F. Ritt. This theorem can be 
formulated in the following way (J is an ordinary differential field of 
characteristic 0, yu • • • , yn are unknowns, and m is a nonnegative 
integer less than n). 

RITT'S THEOREM. Let IL be a prime differential ideal in 
7{yu * • • > ?n},8 let J be a differential polynomial in j{yi, • • • , yn} 
butnotinIL,letILo~Hr\j{yi, • • • , ym}. Then there exists a differential 
polynomial Jo in j{yu • • • » ym} but not in II0 such that every solution 
of Ho which is not a solution of Jo can be completed4 into a solution of H 
which is not a solution of J. 

In Ritt's proof (Trans. Amer. Math. Soc. vol. 48 (1940) pp. 542-
552: see especially pp. 543-545) it is assumed that J consists of func
tions of a complex variable meromorphic in a given region, but it is 
not very difficult to modify his proof to obtain a purely algebraic one, 
valid for abstract J. 

2. The existence theorems. We work with an ordinary differential 
field J of characteristic 0 with an algebraically closed field of con
stants Q. 

THEOREM 1. Let 2 be a proper subset of j{yu • • • » yn}, and let J 
be a differential polynomial in j{yi, • • • , yn} but not in the perfect 
differential ideal {2}. Then 2 has a solution rji, • • • , rjn for which 
J5*0 and the field of constants of J(rji, • • • , rjn) is Q. 

PROOF. Since / (£ {S}, we have /(£II, where II is one of the prime 
components of { S} (in the representation of {2} as an intersection 

3 The notation jf{ • • • } indicates, as usual, differential ring adjunction. Thus 
y{yit ' ' ' t yn] is the differential ring consisting of all differential polynomials in 
yit • • • t yn with coefficients in J. 

4 Following Ritt, we say that a solution rjit • • • , rjm of Ho can be completed into a 
solution of II provided there exist elements qm+i» • • • » Vn in some extension of 
jfivit * * * » Vm) such that ru, • • • , tin is a solution of n . 
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of prime differential ideals none of which contains any other). I t 
follows that II has a solution f 1, • • • , ft, which is not a solution of J , 
such that each ft is differentially algebraic over J. (To see this let 
yu • • • , y m be a complete set of arbitrary unknowns for II; by Ritt 's 
theorem any solution of IIW which is not a solution of a certain dif
ferential polynomial JoÇ£ILm can be completed to a solution of II 
which is not a solution of J; but IIW = (0), so that any set ft, • • • , ft» 
of differentially algebraic elements not annulling J0 can be com
pleted to a solution ft, • • • , ft of II not annulling J; clearly this 
solution has the desired property.) We suppose that of all solutions 
ft, • • • > ft of II, not annulling J and having the property that each 
f i is differentially algebraic over J, ours leads to the smallest value of 
p=*degree of transcendency of J(ft, • • • , ft) over J. 

Let 7 be a constant in 7(ft, • • • , ft), and suppose that y is 
transcendental over Q. Then (PV, §14, Theorem 2) y is transcendental 
over J , too. Introducing a new unknown w, let T be the prime dif
ferential ideal in j{w, yu • • • , yn} with generic solution (PV, §11) 
7» ft» " ' • » ft- Then r 0 = rny{ze ;} , which has the generic solution 7, 
equals [w'\. By Ritt 's theorem there is a J o E 7 { w } , with J o ^ [ ^ ' ] , 
such that every solution of [wf] (that is, any constant) not annulling 
Jo can be completed into a solution of T not annulling J. Since there 
obviously exists a constant cÇiQ for which Jo 5^0, T has a solution 
£» Vu ' • • » *7n for which 7?^0. By Gourin's theorem (PV, §13) we 
have: degree of transcendency of J(c9 rju • • • , rjn) over J is less than 
degree of transcendency of J(y, ft, • • • , ft) over J. Therefore 
Vu ' ' ' » Vn is a solution of II not annulling / with the property that 
each rji is differentially algebraic over J , and we have: degree of trans
cendency of J(rju • ' • » Vn) over J is less than p. This contradicts the 
definition of pt shows that y is algebraic over Ç, and proves the 
theorem. 

THEOREM 2. If L(y) =y n >+£ 1 y w - i>+ • . . +pny, where each pi(~J, 
then L{y) has a fundamental system of solutions 171, • • • , rjn such that 
the field of constants of J{rji, • • - , rjn) is Q. 

PROOF. The wronskian determinant W(yi, • • • , yn) is not con
tained in {L(yi), • • • , L(yn)}, as W(yu • • • , yn) is of order n — 1. 
By Theorem 1, {L(yi), • • • , L(yn)} has a solution 771, • • • , r\n such 
that W(?7i, • • • , rjn) 5*0 and the field of constants of J(rju • • • , ^n) 
is C- Since W(?7i, • • • , rçO^O, the elements 771, • • • , rjn are linearly 
independent over constants, and constitute a fundamental system 
of solutions of L(y). 

REMARK. As observed by the referee, Theorem 2 extends to sys 
terns Li(yu • • • , 3 0 = 0 , i = l, • • • , n% where Li(yh • • • , yn)=*yi 
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""" 2 * - i aijyj (each aijÇzJ). I t is merely necessary to introduce n2 

unknowns y a and to note that £ > ( • • • , y^t • • • ) =de t \y{j\ is of 
order 0 and therefore not contained in { • • • , Li(yji, • • • , yyn), 
• • • } . The proof then proceeds as above. 

We now consider differential fields which are extensions of J by 
integrals, exponentials of integrals, and algebraic functions, that is, 
extensions of the form J (au • • • , otm) where either a{ G7(«i, • • • , 
ai-i) or al /on€J(au • • • , a<-i) or ai is algebraic over J (au • • • , 
a»_i), i = l, • • • , w. 

If 5C is such an extension of Jt and if in addition the field of con
stants of 3C is again Q, then 5C is said to be a Uouvillian extension of 

7-
In any case, we introduce (corresponding to PV, §24) ten types of 

extensions by integrals, exponentials of integrals and algebraic func
tions, namely, extensions by 

(1) integrals, exponentials of integrals, and algebraic functions, 
(2) integrals and exponentials of integrals, 
(3) exponentials of integrals, 
(4) integrals and algebraic functions, 
(5) integrals and radicals, 
(6) exponentials of integrals, 
(7) integrals, 
(8) algebraic functions, 
(9) radicals, 
(10) rational functions. 

THEOREM 3. Let2Cj{yu • • • , y » } , Jej{yu • • • , 3 > « } , / £ { s } . 
If 2 has a solution fi, • • • , fn for which J 9*0 such that J(Çi, • • • , fn) 
is contained in an extension of J of one of the types (1)—(10), then 2 
has a solution rju • • • , rjn for which J 9*0 such that J(rju • • • , rjn) 
is contained in a Uouvillian extension of J of the same type. 

PROOF. Suppose J(Çu • • • , Çn)QJ(au • • • » am), where each ai 
is, appropriately, either an integral of an element of J (au • • • , a*-i), 
an exponential of an integral of such an element, or algebraic 
over J(ai, • • • , o^-i). Then there exist differential polynomials 
Pi(ui, • • • , um)t Q(uu • • • , um)Ej{ui, • • • • um}> where U\, ' ' • , Wm 
are new unknowns, such that ?< = P»(ai, • • • , am)/Qi(au • • • , am), 
i = l, • • • , w. There also exist, for i = l, • • • , w, differential poly
nomials Jlf<(«i, • • • , Ui-i), Ni(uu • • • , «<-i)G7{^ii • • • » «<-i} such 
that either al = Mi(au • • • , a^i)/Ni(au • • • , c^_x), or a / /a< 
= Af»(ai, • • • , airi)/Ni(au • • • , a<-i), or aiNi(ai, • • • , a<_i) is in
tegral and algebraic over 7{ai , • • - , ce»_i}. Let A be the prime dif-
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ferential ideal in j{yu • • • , yn, U\, • • • , um\ with generic solution 
fi> * • • y fw, «i, • • • , ocm. By Theorem 1, A has a solution 771, • • • , rjnt 

0i, • • • , 0m for which J(rju • • , i7*)Qi(|8i, • • • , j8w) • • • 
Q»(ft, • • • » ft»)#i ' • • #«(011 • • • , 0m-i)0i • • • 0™^O, such that the 
field of constants of 7(171, • • -, rjn, 0i, • • • , 0m) is Q. It is now ob
vious that 771, • • • , rjn is a solution of S not annulling J , that 
7(*?i> ' * ' t Vn)QJ0u • • • 1 0m), and that 7(0i> • • • , ft») is a liou-
villian extension of 7 of the same type as J(aif • • • , a»»). 

A homogeneous linear differential polynomial L(y)=y(n)+piy<-n~'1) 

+ • • • +pny, with each pi in 7» is linearly reducible over 7 if there 
exist two homogeneous linear differential polynomials M(y) and N(y) 
with coefficients in 7 and of positive order, such that L(y) = M(N(y)). 
If L{y) is not linearly reducible over 7 it is linearly irreducible over 7. 

THEOREM 4. Let L(y)=yin)+p1y
(n-1)+ • • • +pny, with each pi in 

7, be linearly irreducible over J. If L(y) has one solution contained in an 
extension of J of one of the types (1)-(10), then L(y) has a fundamental 
system of solutions 771, • • • , rjn such that J(rji, • • • , rjn) is a liouvil-
lian extension of J of the same type. 

PROOF. By Theorem 3, L(y) has a solution 77 contained in a liouvil-
lian extension 3C of 7 of the required type. By Theorem 2, L(y) has 
a fundamental system of solutions fi, • • • , fn such that the field of 
constants of JC(f 1, • • • , f n) is Q. Therefore 77 is a linear combination 
over C of fi, • • • , fn, so that Ç^JiÇi, • • • , f») is a Picard-Vessiot 
extension of 7 containing 77. Letting © be the group of all auto
morphisms of Ç over 7> we see that , in the linear space over Q 
spanned by fi, • • • , f», the linear subspace spanned by the set of 
all elements 0-77 (o-£@) is invariant under ®. Since L(y) is linearly 
irreducible, the only invariant linear subspaces are the zero space and 
the whole space (PV, §22, Theorem 1). Therefore there exist n auto
morphisms 01, • • • , <Tn in ® such that o ^ , • • • , <rny are linearly 
independent over Q. 

Now, Ci can be extended to an isomorphism T\ of 3Ci 
= 3C(fi, • • • , fn) over 7î °"2 can be extended to an isomorphism 
T2 of 3C2 = 7(3Ci> Ti3Ci) over J; • • ' ;crn can be extended to an iso
morphism rn of 3Cn=7(3Cn-i, rn_i3Cn_i) over J. Therefore Oi 77, • • • , 
crnrj is a fundamental system of solutions of L(y) contained in 
3Co = 7(ri3C> • • • » Tn3C). That is, 0*177, • • • , 0̂ 77 is a solution of 
{L(yi)9 • • • , L(yn)) for which TF(o"i77, • • • , 0^)5^0, such that 
7(o"i77, • • • , orn77)C3C0. Now, 5Co is clearly an extension of 7 of t n e 

same type that 3C is. Therefore, by Theorem 3, {L(yi), • • • , i(y»i)} 
has a solution 171, • • • , rç» for which W(rju • • • , 77n)^0, such that 
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7(^i> • • • f Vn) is contained in a liouvillian extension of J of the re
quired type. I t follows that rji, • • • , rjn is a fundamental system of 
solutions of L(y), and (see PV, §25) J(rjif • • • , rjn) is itself a liouvil
lian extension of J of the required type. 

COLUMBIA UNIVERSITY 

ON SOME EXAMPLES IN THE THEORY OF POWER SERIES 

P. TURÂN 

Fabry,1 Hardy,2 S. Bernstein8 and Carleman4 discovered that for 
any ô > 0 there exist power series 23o>a^v which are continuous for 
\z\ ^ 1 and for which the series X) | a " | 2 ~ 8 diverges. An elegant 
example is provided by the series 

oo picn log n 

(1) ƒ(«) = £ 1 / 2 1 , ««. * * 0 f j 8 > l f 
n=2 ft112 lOgP W 

which is continuous for | s | 5*1 (and even uniformly convergent 
there);5 another example for the Carleman singularity, explicitly 

Received by the editors July 22, 1947, and, in revised form, November 17, 1947. 
1 E. Fabry, Ordre des points singuliers de la série de Taylor, Acta Math. vol. 36 

(1913) pp. 69-194, esp. p. 103. 
2 G. H. Hardy, A theorem concerning Tayor's series, Quarterly Journal of Pure 

and Applied Mathematics vol. 44 (1913) pp. 147-160. In these two papers it was 
shown that if ô >0 the series f2(z) = Ylieivl~ lzV/vx~h is uniformly convergent for \z\ < 1 
and in Hardy's paper remark was made (p. 157) upon H. Bohr's problem on con
structing a power series which is uniformly but not absolutely convergent for \z\ ^ 1 . 

3 S. Bernstein, C. R. Acad. Sci. Paris (1914). He gave interesting cosine-poly
nomials H(x) — X^- i °v cos v% (p prime s 1 mod 4) with the properties | H(x) \ ̂  1 
and ]Cï-i I &y I —(p — ̂ /P112 which contains the seeds of the Carleman-singularity 
and were indeed the basis of Carleman's own construction. 

4 T. Carleman, Über Fourier Koefficienten einer steigen Funktionen, Acta. Math, 
vol. 41 (1918) pp. 337-384. Here is asserted explicitly and proved for the first time the 
existence of a continuous f%(x)~Yl(av c o s v%+bp sin vx) with ]£i (|^|2""ô-f-|ô„|2~5) 
=» oo, Ô arbitrarily small: the existence of a continuous power series with the same 
property seems to be explicitly mentioned at the first time by Sidon; see footnote 9. 

6 See G. H. Hardy and J. E. Lit tie wood (Some problems of Diophantine approxima
tion: A remarkable trigonometrical series, Proc. Nat. Acad. Sci. U.S.A. vol. 2 (1916) pp. 
583-586), who considered only the functions / I W ^ I C L J (e*cn log n/nlf2+ahn, c?*0t 

0 < a < l (the divergence of the (2 — ô)th power of the moduli of the coefficients is not 
explicitly mentioned there). Series (1) seems to have been discussed for the first time 
by Zygmund in his book on trigonometric series. He uses there (in a simplified form) 
an argument due to Hille (Note on a power series considered by Hardy and Littlewood, 
J. London Math. Soc. vol. 4 (1929) pp. 176-182) and based on the application of 
Van der Corput's estimates to sums of the form 2j^*Mn>. 


