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Suppose that in (a<x<b) (hereafter referred to as (#, &)), 
(1) f(x) is defined and has derivatives of the first n orders. 

Then, from the general mean-value theorem with Lagrange's form of 
remainder follows the existence of 0=0(#, A), such that 

(2) f(x + h) = ƒ(*) + £ ^ƒ('>(*) + -s ƒ<»>(* + eh) 
r«i r\ n\ 

for a < x < x + h < b. 

The 0 in (2) is sometimes a uniquely determinate function of x and h 
in the relevant domain a<x<x+h<b (hereafter referred to as R), 
as, for instance, if f(n+1)(x) exists and is not zero in (a, &). If, further, 
/<n+1>(#) is continuous in (a, &), it is easily seen that 

1 
lim 0(#, h) = in a < x < b. 

h-»+o n -f 1 
It is also possible for 0(x, h) to be an analytic function, for example, 

/ " hrT(n + 1) \ 
«(*, *) = *r»log(l + E vf J_ ' ), 

\ r-i r ( » + r + 1)/ 

which happens when f(x) = e*. 
I t would, therefore, seem worth while to determine the types of 

functions that are or are not possible for d(x, h). Inquiry in this direc
tion has led to the results of this paper, namely: 

THEOREM 1. If a polynomial d(xy h) exists such that (2) is true with 
6(xy h) in place of 0, thenf(n+l)(x) exists in (a, b) and either 

(a) /<"+1>(#) = 0 in (a, b) 

or 
(b) f(n+1)(x) = a constant j£ 0 in (a, b), andd(x, h) is uniquely determinate 

and equal to l/(w + l) in R. 

THEOREM 2. If (2) is true with 0(x, h)=*c(x)+hd4>(x, h) where 
(3) cj>(xf h) is bounded in R; 
(4) d is a constant greater than 1 ; 
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(5) dO/dx, d29/d2x are continuous in x, and 0 is bounded in R; 
(6) for all sufficiently small h, l+h(dd/dx) ?*Q in R; 

then, also, (a) and (b) of Theorem 1 are true. 

I t is significant that, if 6 is uniquely determined by (2) in R and 
not equal to l/(w + l ) , then 0 = d(x, h) cannot be equal to a poly
nomial in R (by Theorem 1) or even to an analytic function (by 
Theorem 2) satisfying 

(7) linu-oô0/ôÂ = O for every x in (a, &). 
[In the following we write d(x, 0) for lim^+o 0(x, h) and Oi(x, 0) for 

lima-+o(0(#, h)—d{x, 0)/h) (which limits obviously exist in the con
texts of the two theorems), and 0r8 for (dr+8/dxrdh8)0, wherever the 
latter obviously exists. ] 

PROOF OF THEOREM 1. 

(8) The conditions (5) and (6) are obviously satisfied here and 
(2) is true by hypothesis. 

On account of the consequent boundedness of d in Rf and the con
tinuity of 6 in x, follows 

(9) y — x+0h for every y in (a, b), with any sufficiently small h and 
a correspondingly chosen x such that (x, h) lies in R. 
From (8) and (9) follows 

(10) /n+10*0 and fn+2{x) exist and are continuous in (a, b). 
Now, from the general mean-value theorem follows 

ƒ(* + h) = fix) + È -^ƒ('>(*) + h^\ ƒ<"+*>(*) 
r-1 t\ ( » + 1)1 

fe»+2 

+ , , ^ , / ( M + 2 ) ( * + M , o < * i < i , (x,h)CR; 

(n + 2) ! 

and from (2) and the same theorem applied to fn(x+0h) follows 

fix +h)= f(x) + £ — ƒ<"(*) + —— ƒ<•+«(*) 
(12) ~l " (n)l 

hn+2e2 

+ fw>(% + e2oh)} o < e2 < l, (*, *) C R. 
n\2\ 

Subtracting (12) from (11) and making h—*+0 after division by 
hn+1, it follows by (10) that 

(13) f("+»(x)[l - (» + l)0(a, 0)] = 0. 

Using (13) in (11) and (12), and making h-*+Q after division of 
their difference by hn+2

f it follows, again by (10), 
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r (»+l)(n+2) 1 

(14)
 /(n+2)(*} L1 " 2 6K%% 0 ) J 

- ƒ<•+»(*)(» + 1)(» + 2)0i(«. 0) = 0. 
Now, either 

(15a) jf (n+1)(#)=0 everywhere in (a, b)\ 
or 

(15b) f(n+1)(x) 5^0 everywhere in (a, ô) ; 
or 

(15c) on account of the continuity (by (10)) of/ (n+1)(x) there exists 
a closed interval (#i, bi) contained in (a, b) such that / ( W + 1 ) ( # ) T ^ 0 for 
ai<x<bi, and one at least of/(w+1)(ai) and f(n+1)(bi) is zero. 

If (15c) were possible, then we should have, by (13) and (14), 

/ O H * > ( * ) . » / 2 ( » + 1) - f<*+»(x)(n + l)(n + 2)61(x1 0) = 0 

in (ai < x < 6i), 

and hence /Cn+1)(#) —A -exp {0(#)} in ai<x<bx, where <j>(x) is a poly
nomial and 4̂ is a constant, and making x—>#i or èi in this, there would 
follow tha t / ( n + 1 ) (#) = 0 in a\<x<bif which contradicts (15c). Hence 

(16) (15c) is impossible, and f(n+l)(x) =A exp {<t>(x)} ina<x<b, 
where </>(x) is a polynomial and A = a c o n s t a n t s , if f(n+1)(x) 5^0 for 
some x in (a, b). 

Now differentiating (2) with respect to x and h, as is obviously 
permissible on account of (10), and subtracting, and dividing by 
hn~\ it follows that 

h 
ƒ<»>(*) - ƒ<»>(* + Oh) = — /<n+1)(* + Oh) [6 - l + Moi ~ Wio] in JR. 

n 

Differentiating this (possible by (10)) with respect to x and using (16) 
we get 

(17) exp {k(xf h)}—g(x, h) in i?, in case (15b), where k(x, h) 
=#(#) — <p(x+6h) and k(x, h) and g(x, h) are polynomials in x and h. 

I t is now seen by the theory of analytic continuation that (17) is 
impossible unless k(x, h) is a constant, which again is seen to be zero 
by keeping x fixed and making h—»+0. Hence 

(18) 4>(x) = <t>(x + eh) in R. 

Now from (2) obviously follows 
(19) f(x) is a polynomial of degree not greater than n in (a, 6) if 

0(x, / 0 = 0 . Also, by continuous variation of x and A in R it follows 
from (18) that 
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(20) <j>(x) = a constant k in (a, b) if 6(x, h) f^O, 
and hence, using (16), follows 

(21) ƒ<*+»(*) «i ia* in (a, b) where A^O if ƒ<•+«(*)?*0 in (a, 6), 
Now the theorem follows from (10), (15a), (15b), (16), (19) and (21). 
since, when / ( n + 1 ) ( # ) = a c o n s t a n t s , 0 = l / ( w + l ) and is uniquely 
determined by (2) in R. 

PROOF OF THEOREM 2. In this case, the statements (8) to (14) follow 
as above, and 0i(#, 0) = 0 since d > 1. Hence (13) and (14) now become 

(22) ƒ<*+*>(*) [1 - (» + 1M*)] = 0 in (a, ft), 

(23) 
r (n+l)(n+2) "1 

/<*+2>(*) 1 - c2(#) = 0 in (a, b). 

Hence either 
(24a) ƒ<n+1) (x) = 0 every where in (a, &), 

or 
(24b) fn+1)(x) =C9*0 for some x in (a, 6). 

Then, (22) and (23) give 
(25) <;(*) = l / ( n + l ) wherever ƒ<n+1>(:x;)^0, 
(26) jf<«+2>(*)=0 wherever ƒ<»+»(*)5*0. 

The theorem now follows from (10), (24a), (24b), (25) and (26), since, 
when f(n+1)(x) =c?*0 in (a, b), 0 in (2) is uniquely determined in i?. 

Note added January 18, 1948. The conclusions (a) and (b) of 
Theorem 1 are true if (2) holds with 0(x, h) in place of 0, where 

m 

6(x, h) = X) h%(x), 

and di(x) is a polynomial, 0(x, h) satisfies (6) and each of the func
tions 6v(x) satisfies (5). The line of proof is briefly as follows: 

The arguments up to and including (16) are the same as above, 
and the equation in (17) is now true with K(x, h)=(j>(x)-~cl)(x+d]i), 
and K(x, h) and g(x, h) polynomials in h for fixed x. The rest of the 
argument is the same as before. 

The conclusion (20) can also be seen directly as follows: Differ
entiating (18) with respect to hf we have 

4>'(x+6h)l0+ h — J = 0. 

Making h—^O in this and noting that 0(#, 0) = l / ( w + l ) in case (15b) 
we have <t>f(x) = 0 , and hence <p(x) = &, a constant in (a, b). 
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