ON POLYNOMIALS AND LAGRANGE'S FORM OF THE GENERAL MEAN-VALUE THEOREM

V. RAMASWAMI

Suppose that in (a < x < b) (hereafter referred to as (a, b)),

(1) f(x) is defined and has derivatives of the first *n* orders. Then, from the general mean-value theorem with Lagrange's form of remainder follows the existence of $\theta = \theta(x, h)$, such that

(2)
$$f(x+h) = f(x) + \sum_{r=1}^{n-1} \frac{h^r}{r!} f^{(r)}(x) + \frac{h^n}{n!} f^{(n)}(x+\theta h)$$
for $a < x < x+h < b$.

The θ in (2) is sometimes a uniquely determinate function of x and h in the relevant domain a < x < x + h < b (hereafter referred to as R), as, for instance, if $f^{(n+1)}(x)$ exists and is not zero in (a, b). If, further, $f^{(n+1)}(x)$ is continuous in (a, b), it is easily seen that

$$\lim_{h \to +0} \theta(x, h) = \frac{1}{n+1} \qquad \text{in } a < x < b.$$

It is also possible for $\theta(x, h)$ to be an analytic function, for example,

$$\theta(x, h) = h^{-1} \log \left(1 + \sum_{r=1}^{\infty} \frac{h^r \Gamma(n+1)}{\Gamma(n+r+1)} \right),$$

which happens when $f(x) = e^x$.

It would, therefore, seem worth while to determine the types of functions that are or are not possible for $\theta(x, h)$. Inquiry in this direction has led to the results of this paper, namely:

THEOREM 1. If a polynomial $\theta(x, h)$ exists such that (2) is true with $\theta(x, h)$ in place of θ , then $f^{(n+1)}(x)$ exists in (a, b) and either

(a)
$$f^{(n+1)}(x) = 0$$
 in (a, b)

or

(b) $f^{(n+1)}(x) = a \operatorname{constant} \neq 0$ in (a, b), and $\theta(x, h)$ is uniquely determinate and equal to 1/(n+1) in R.

THEOREM 2. If (2) is true with $\theta(x, h) = c(x) + h^d \phi(x, h)$ where (3) $\phi(x, h)$ is bounded in R;

(4) d is a constant greater than 1;

Received by the editors January 28, 1948.

(5) $\partial\theta/\partial x$, $\partial^2\theta/\partial^2 x$ are continuous in x, and θ is bounded in R; (6) for all sufficiently small h, $1+h(\partial\theta/\partial x)\neq 0$ in R; then, also, (a) and (b) of Theorem 1 are true.

It is significant that, if θ is uniquely determined by (2) in R and not equal to 1/(n+1), then $\theta = \theta(x, h)$ cannot be equal to a polynomial in R (by Theorem 1) or even to an analytic function (by Theorem 2) satisfying

(7) $\lim_{h\to 0} \frac{\partial \theta}{\partial h} = 0$ for every x in (a, b).

[In the following we write $\theta(x, 0)$ for $\lim_{h \to +0} \theta(x, h)$ and $\theta_1(x, 0)$ for $\lim_{h \to +0} (\theta(x, h) - \theta(x, 0)/h)$ (which limits obviously exist in the contexts of the two theorems), and θ_{rs} for $(\partial^{r+s}/\partial x^r \partial h^s)\theta$, wherever the latter obviously exists.]

PROOF OF THEOREM 1.

(8) The conditions (5) and (6) are obviously satisfied here and (2) is true by hypothesis.

On account of the consequent boundedness of θ in R, and the continuity of θ in x, follows

(9) $y=x+\theta h$ for every y in (a, b), with any sufficiently small h and a correspondingly chosen x such that (x, h) lies in R. From (8) and (9) follows

(10) $f^{n+1}(x)$ and $f^{n+2}(x)$ exist and are continuous in (a, b). Now, from the general mean-value theorem follows

(11)
$$f(x+h) = f(x) + \sum_{r=1}^{n} \frac{h^{r}}{r!} f^{(r)}(x) + \frac{h^{n+1}}{(n+1)!} f^{(n+1)}(x) + \frac{h^{n+2}}{(n+2)!} f^{(n+2)}(x+\theta_{1}h), \quad 0 < \theta_{1} < 1, \quad (x,h) \subset R;$$

and from (2) and the same theorem applied to $f^n(x+\theta h)$ follows

(12)
$$f(x+h) = f(x) + \sum_{r=1}^{n} \frac{h^{r}}{r!} f^{(r)}(x) + \frac{h^{n+1}\theta}{(n)!} f^{(n+1)}(x) + \frac{h^{n+2}\theta^{2}}{n!2!} f^{(n+2)}(x+\theta_{2}\theta h), \quad 0 < \theta_{2} < 1, (x, h) \subset R.$$

Subtracting (12) from (11) and making $h \rightarrow +0$ after division by h^{n+1} , it follows by (10) that

(13)
$$f^{(n+1)}(x) [1 - (n+1)\theta(x, 0)] = 0.$$

Using (13) in (11) and (12), and making $h \rightarrow +0$ after division of their difference by h^{n+2} , it follows, again by (10),

(14)
$$f^{(n+2)}(x) \left[1 - \frac{(n+1)(n+2)}{2} \theta^2(x,0) \right] - f^{(n+1)}(x)(n+1)(n+2)\theta_1(x,0) = 0.$$

Now, either

(15a) $f^{(n+1)}(x) = 0$ everywhere in (a, b); or

(15b) $f^{(n+1)}(x) \neq 0$ everywhere in (a, b); or

(15c) on account of the continuity (by (10)) of $f^{(n+1)}(x)$ there exists a closed interval (a_1, b_1) contained in (a, b) such that $f^{(n+1)}(x) \neq 0$ for $a_1 < x < b_1$, and one at least of $f^{(n+1)}(a_1)$ and $f^{(n+1)}(b_1)$ is zero.

If (15c) were possible, then we should have, by (13) and (14),

$$f^{(n+2)}(x) \cdot n/2(n+1) - f^{(n+1)}(x)(n+1)(n+2)\theta_1(x,0) = 0$$

in $(a_1 < x < b_1)$

and hence $f^{(n+1)}(x) = A \cdot \exp \{\phi(x)\}$ in $a_1 < x < b_1$, where $\phi(x)$ is a polynomial and A is a constant, and making $x \rightarrow a_1$ or b_1 in this, there would follow that $f^{(n+1)}(x) = 0$ in $a_1 < x < b_1$, which contradicts (15c). Hence

(16) (15c) is impossible, and $f^{(n+1)}(x) = A \exp \{\phi(x)\}$ in a < x < b, where $\phi(x)$ is a polynomial and $A = a \operatorname{constant} \neq 0$, if $f^{(n+1)}(x) \neq 0$ for some x in (a, b).

Now differentiating (2) with respect to x and h, as is obviously permissible on account of (10), and subtracting, and dividing by h^{n-1} , it follows that

$$f^{(n)}(x) - f^{(n)}(x + \theta h) = \frac{h}{n} f^{(n+1)}(x + \theta h) \left[\theta - 1 + h\theta_{01} - h\theta_{10}\right] \text{ in } R.$$

Differentiating this (possible by (10)) with respect to x and using (16) we get

(17) exp $\{k(x, h)\} = g(x, h)$ in R, in case (15b), where $k(x, h) = \phi(x) - \phi(x + \theta h)$ and k(x, h) and g(x, h) are polynomials in x and h.

It is now seen by the theory of analytic continuation that (17) is impossible unless k(x, h) is a constant, which again is seen to be zero by keeping x fixed and making $h \rightarrow +0$. Hence

(18)
$$\phi(x) = \phi(x + \theta h) \qquad \text{in } R.$$

Now from (2) obviously follows

(19) f(x) is a polynomial of degree not greater than n in (a, b) if $\theta(x, h) \equiv 0$. Also, by continuous variation of x and h in R it follows from (18) that

(20) $\phi(x) = a \text{ constant } k \text{ in } (a, b) \text{ if } \theta(x, h) \neq 0$, and hence, using (16), follows

(21) $f^{(n+1)}(x) = Ae^k$ in (a, b) where $A \neq 0$ if $f^{(n+1)}(x) \neq 0$ in (a, b), Now the theorem follows from (10), (15a), (15b), (16), (19) and (21). since, when $f^{(n+1)}(x) = a$ constant $\neq 0$, $\theta = 1/(n+1)$ and is uniquely determined by (2) in R.

PROOF OF THEOREM 2. In this case, the statements (8) to (14) follow as above, and $\theta_1(x, 0) = 0$ since d > 1. Hence (13) and (14) now become

(22)
$$f^{(n+1)}(x)[1-(n+1)c(x)] = 0 \quad \text{in } (a, b),$$

(23)
$$f^{(n+2)}(x)\left[1-\frac{(n+1)(n+2)}{2}c^2(x)\right]=0 \quad \text{in } (a, b).$$

Hence either

(24a) $f^{(n+1)}(x) = 0$ every where in (a, b), or

(24b) $f^{(n+1)}(x) = c \neq 0$ for some x in (a, b). Then, (22) and (23) give

(25) c(x) = 1/(n+1) wherever $f^{(n+1)}(x) \neq 0$,

(26) $f^{(n+2)}(x) = 0$ wherever $f^{(n+1)}(x) \neq 0$.

The theorem now follows from (10), (24a), (24b), (25) and (26), since, when $f^{(n+1)}(x) = c \neq 0$ in $(a, b), \theta$ in (2) is uniquely determined in R.

Note added January 18, 1948. The conclusions (a) and (b) of Theorem 1 are true if (2) holds with $\theta(x, h)$ in place of θ , where

$$\theta(x, h) = \sum_{r=0}^{m} h^{r} \theta_{r}(x),$$

and $\theta_1(x)$ is a polynomial, $\theta(x, h)$ satisfies (6) and each of the functions $\theta_{\nu}(x)$ satisfies (5). The line of proof is briefly as follows:

The arguments up to and including (16) are the same as above, and the equation in (17) is now true with $K(x, h) = \phi(x) - \phi(x+\theta h)$, and K(x, h) and g(x, h) polynomials in h for fixed x. The rest of the argument is the same as before.

The conclusion (20) can also be seen directly as follows: Differentiating (18) with respect to h, we have

$$\phi'(x+\theta h)\left(\theta+h\frac{\partial\theta}{\partial h}\right)=0.$$

Making $h \rightarrow 0$ in this and noting that $\theta(x, 0) = 1/(n+1)$ in case (15b) we have $\phi'(x) = 0$, and hence $\phi(x) = k$, a constant in (a, b).

Andhra University

1948]