$$
C_{n}=\bigcup_{j=0}^{n}\left(\text { closure } R_{j}\right) \cup\left\{S \sim \bigcup_{j=0}^{\infty}\left(\text { closure } R_{j}\right)\right\}
$$

Clearly, for each integer n,

$$
\bigcup_{j=0}^{\infty} C_{j}=S . \quad C_{n} \subset C_{n+1} \in F
$$

After checking the hereditariness of F, we infer from 4.2 that each open set is ϕ measurable F. Hence, if we recall $3.5, C_{n}$ is ϕ measurable F for each integer n. Thus F is ϕ convenient. Reference to 4.3 completes the proof.

University of California

ON THE DISTRIBUTION OF THE VALUES OF $|f(z)|$ IN THE UNIT CIRCLE

ROBERT BREUSCH

1. Summary. Let $f(z)=1+a_{1} z+\cdots$ be analytic for $|z| \leqq 1$, $f(z) \neq 1$. Then $|f(z)|$ will be greater than 1 at some points of the unit circle, and less than 1 at others. Calling $A(f)$ the area of the set of points within the unit circle, for which $|f(z)| \geqq 1$, let α and β be the two largest non-negative constants such that $\alpha \leqq A(f) \leqq \pi-\beta$, for every $f(z)$. It is shown that $\alpha=\beta=0$; in other words, if ϵ is arbitrarily small positive, there are functions $f(z)$ such that $A(f)<\epsilon$, and others such that $A(f)>\pi-\epsilon$. The same is true, if $f(z)$ is restricted to polynomials $\prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ with $\coprod_{\nu=1}^{n}\left|z_{\nu}\right|=1$. These statements will be proved in $\S 2$. $\S 3$ contains a few additional results, given without proofs.
2. Proofs. The statements made in the summary are contained in the following theorem.

Theorem. Let P stand for the set of polynomials over the complex field of the form $f(z)=\prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$, with $\prod_{\nu=1}^{n}\left|z_{\nu}\right|=1$; let $A(f)$ denote the area of the set of points in the unit circle, for which $|f(z)| \geqq 1$; let ϵ be an arbitrarily small positive number. Then P contains polynomials $f_{1}(z)$ and $f_{2}(z)$ such that $A\left(f_{1}\right)>\pi-\epsilon$, and $A\left(f_{2}\right)<\epsilon$.

[^0]Proof. Consider $f_{1}(z)=1+N z+z^{2}$, where N is a real positive number greater than 3 . Then in the unit circle, $|f(z)| \geqq|N z|-2$, which is greater than 1 , if $|N z|>3,|z|>3 / N$. Thus

$$
A(f)>\pi-\frac{9}{N^{2}} \pi
$$

and for $N>3(\pi / \epsilon)^{1 / 2}$, this is greater than $\pi-\epsilon$. This proves the first part of the theorem.

To prove the second part, consider a function $F_{0}(z)=b_{1} z+b_{2} z^{2}$ $+\cdots$, analytic for $|z| \leqq 1, F(z) \not \equiv 0$. The real and the imaginary part of a function $F(z)$ will be designated by $\operatorname{Re} F(z)$ and $\operatorname{Im} F(z)$, respectively. Call $\bar{B}\left(F_{0}\right)$ the set of points in the unit circle for which $\operatorname{Re} F_{0}(z) \geqq 0$, and $B\left(F_{0}\right)$ the area of $\bar{B}\left(F_{0}\right)$. Let n_{1} be a positive real number.

The function $F_{1}(z)=\exp \left(n_{1} F_{0}(z)\right)-1=n_{1} b_{1} z+\cdots$ is again analytic for $|z| \leqq 1$. Its real part is $\operatorname{Re} F_{1}(z)=\exp \left(n_{1} \operatorname{Re} F_{0}(z)\right)$ $\cdot \cos \left(n_{1} \operatorname{Im} F_{0}(z)\right)-1$. Therefore $\operatorname{Re} F_{1}(z)$ is positive or zero only where $\operatorname{Re} F_{0}(z) \geqq 0$ and $\cos \left(n_{1} \operatorname{Im} F_{0}(z)\right) \geqq \exp \left(-n_{1} \operatorname{Re} F_{0}(z)\right)>0$. It will be shown (see the lemma below), that for sufficiently large values of n_{1}, $\cos \left(n_{1} \operatorname{Im} F_{0}(z)\right)$ is negative in a subregion of $\bar{B}\left(F_{0}\right)$ of area greater than $(1 / 3) B\left(F_{0}\right)$. Then $B\left(F_{1}\right)<(2 / 3) B\left(F_{0}\right)<(2 / 3) \pi$. Similarly a function $F_{2}(z)=\exp \left(n_{2} F_{1}(z)\right)-1$ may be formed such that $B\left(F_{2}\right)$ $<(2 / 3) B\left(F_{1}\right)<(2 / 3)^{2} \pi$. Continuing in this way, for any arbitrarily chosen positive number ϵ, a function $F_{t}(z)=c_{1} z+\cdots$ may be formed which is analytic for $|z| \leqq 1$, and for which $B\left(F_{t}\right)<(2 / 3)^{t} \pi<\epsilon / 3$, for t large enough.

Then the function $f(z)=\exp \left(F_{t}(z)\right)=1+a_{1} z+\cdots$ is analytic for $|z| \leqq 1$, and $|f(z)|=\exp \left(\operatorname{Re} F_{t}(z)\right)$. Therefore $|f(z)| \geqq 1$ for the same points for which $\operatorname{Re} F_{t}(z) \geqq 0$. If $A(f)$ stands again for the area of the set of points in the unit circle for which $|f(z)| \geqq 1, A(f)=B\left(F_{t}\right)<\epsilon / 3$.

Now choose a positive number η so small that the set of points in the unit circle where $1-2 \eta \leqq|f(z)| \leqq 1$ has an area not exceeding $\epsilon / 3$. Finally choose a positive integer q so large that $\mid a_{q} z^{q}+a_{q+1} z^{q+1}$ $+\cdots \mid<\eta$ for $|z| \leqq 1$ and that $\left|z^{q}\right|<\eta$ for $|z| \leqq 1-\epsilon /(6 \pi)$. Then in the unit circle $\left|1+a_{1} z+\cdots+a_{q-1} z^{q-1}+z^{q}\right|<1-2 \eta+\eta+\eta=1$, except in the two regions where either $|f(z)| \geqq 1-2 \eta$, or $|z|>1$ $-\epsilon /(6 \pi)$. The area of the first region is less than $\epsilon / 3+\epsilon / 3=2 \epsilon / 3$, and the area of the second one is less than $2 \pi \cdot \epsilon /(6 \pi)=\epsilon / 3$. Thus $A\left(f_{2}\right)<\epsilon$, with $f_{2}(z)=1+a_{1} z+\cdots+a_{q-1} z^{q-1}+z^{q}$.

In the proof of the theorem, use has been made of the following lemma.

Lemma. If $F(z)=b_{1} z+b_{2} z^{2}+\cdots \not \equiv 0$ is analytic for $|z| \leqq 1$, if \bar{B} is the set of points of the unit circle for which $\operatorname{Re} F(z) \geqq 0$, and B the area of \bar{B}, and if n is a sufficiently large positive number, then cos $(n \operatorname{Im} F(z))$ is negative in a subset of \bar{B} whose area is greater than $B / 3$.

Proof of the lemma. For $z=r e^{i \theta}, \operatorname{Im} F(z)$ is a function $g_{r}(\theta)$ of r and θ. Choose a positive number m so small that the absolute value of $g_{r}^{\prime}(\theta)=\partial / \partial \theta(\operatorname{Im} F(z))$ will be not less than m except in a subset of \bar{B} whose area is less than $B / 12$. In other words, if \bar{B}^{\prime} is the set of points in the unit circle where $\operatorname{Re} F(z) \geqq 0$ and $\left|g_{r}^{\prime}(\theta)\right| \geqq m$, then B^{\prime}, the area of \bar{B}^{\prime}, will be between $11 B / 12$ and B.

Call M the largest value of $\left|g_{r}^{\prime}(\theta)\right|$ in $|z| \leqq 1, T$ the largest value of $\left|g_{r}^{\prime \prime}(\theta)\right|$ in $|z| \leqq 1$, and S the largest number of intersections between the boundary of \bar{B}^{\prime} and any of the circles $r=$ constant $\leqq 1$. For every r, this number of intersections is not greater than the sum of the numbers of intersections between $r=$ const. and the three curves $\operatorname{Re} F(z)=0 ; \partial / \partial \theta(\operatorname{Im} F(z))=+m ; \partial / \partial \theta(\operatorname{Im} F(z))=-m$. Thus a finite value of S certainly exists. Therefore we know that, for every r,

$$
\begin{equation*}
m \leqq\left|g_{r}^{\prime}(\theta)\right| \leqq M, \quad \text { and } \quad\left|g_{r}^{\prime \prime}(\theta)\right| \leqq T, \text { in } \bar{B}^{\prime} \tag{1}
\end{equation*}
$$

(2) \bar{B}^{\prime} contains less than S separate intervals of the circumference of the circle $r=$ constant.

The subscript r in $g_{r}(\theta)$ will be omitted from here on.
Let $(\sigma, \tau)(\sigma \leqq \theta \leqq \tau)$ be one of the intervals mentioned in (2). Then $g^{\prime}(\theta)$ is either not less than m throughout (σ, τ), or not greater than $-m$ throughout. Assume $g^{\prime}(\theta) \geqq m$ in (σ, τ). Choose a positive number n, and call $\theta_{1}, \theta_{2}, \cdots, \theta_{s}$ the values of θ in (σ, τ) for which $\cos (n g(\theta))=0\left(\sigma \leqq \theta_{1}<\theta_{2}<\cdots<\theta_{s} \leqq \tau\right)$. Assume for the present that $s \geqq 2$. Then

$$
\begin{equation*}
n g\left(\theta_{i+1}\right)-n g\left(\theta_{i}\right)=\pi, \quad \text { for } i=1,2, \cdots, s-1 \tag{3}
\end{equation*}
$$

In the subinterval $\left(\theta_{i}, \theta_{i+1}\right), g(\theta)=g\left(\theta_{i}\right)+\left(\theta-\theta_{i}\right) g^{\prime}(\bar{\theta})$, with $\theta_{i} \leqq \bar{\theta} \leqq \theta$. Since $g^{\prime}(\bar{\theta})$ differs from $\left(g\left(\theta_{i+1}\right)-g\left(\theta_{i}\right)\right) /\left(\theta_{i+1}-\theta_{i}\right)$ absolutely by less than $\left(\theta_{i+1}-\theta_{i}\right) \cdot \max g^{\prime \prime}(\theta)$,

$$
g(\theta)=g\left(\theta_{i}\right)+\left(\theta-\theta_{i}\right) \frac{g\left(\theta_{i+1}\right)-g\left(\theta_{i}\right)}{\theta_{i+1}-\theta_{i}}+\kappa\left(\theta_{i+1}-\theta_{i}\right)^{2} T, \text { with }|\kappa|<1,
$$

or, using (3),

$$
n g(\theta)=n g\left(\theta_{i}\right)+\frac{\pi\left(\theta-\theta_{i}\right)}{\theta_{i+1}-\theta_{i}}+n \kappa\left(\theta_{i+1}-\theta_{i}\right)^{2} T
$$

Since $\cos \left(n g\left(\theta_{i}\right)\right)=0, n g\left(\theta_{i}\right)=2 q \pi \mp \pi / 2$ ($q=$ integer). Here the upper or the lower sign applies according to whether $\cos (n g(\theta))$ is positive or negative throughout $\left(\theta_{i}, \theta_{i+1}\right)$. Thus

$$
\begin{aligned}
\cos (n g(\theta)) & =\cos \left[\mp \frac{\pi}{2}+\frac{\pi\left(\theta-\theta_{i}\right)}{\theta_{i+1}-\theta_{i}}+\kappa n\left(\theta_{i+1}-\theta_{i}\right)^{2} T\right] \\
& = \pm \sin \left[\frac{\pi\left(\theta-\theta_{i}\right)}{\theta_{i+1}-\theta_{i}}+\kappa n\left(\theta_{i+1}-\theta_{i}\right)^{2} T\right] \\
& = \pm \sin \frac{\pi\left(\theta-\theta_{i}\right)}{\theta_{i+1}-\theta_{i}}+\kappa^{\prime} n\left(\theta_{i+1}-\theta_{i}\right)^{2} T \text { with }\left|\kappa^{\prime}\right| \leqq|\kappa|<1
\end{aligned}
$$

Therefore

$$
\begin{array}{r}
\text { (4) } \quad \int_{\theta_{i}}^{\theta_{i+1}} \cos (n g(\theta)) d \theta= \pm \frac{2}{\pi}\left(\theta_{i+1}-\theta_{i}\right)+\lambda_{i} n\left(\theta_{i+1}-\theta_{i}\right)^{3} T \\
\text { with }\left|\lambda_{i}\right|<1 .
\end{array}
$$

For any θ-interval (γ, δ), let $I_{\gamma \delta}$ stand for the sum of the lengths of all those subintervals of (γ, δ), where $\cos (n g(\theta))$ is negative. Then $(\delta-\gamma)-I_{\gamma \delta}$ is equal to the sum of the lengths of the subintervals of (γ, δ), where $\cos (n g(\theta))$ is positive.

From (4) follows

$$
\begin{aligned}
\int_{\theta_{1}}^{\theta_{s}} \cos (n g(\theta)) d \theta= & \frac{2}{\pi}\left[\left(\theta_{s}-\theta_{1}-I_{\theta_{1} \theta_{s}}\right)-I_{\theta_{1} \theta_{s}}\right] \\
& +\lambda(s-1) n T \cdot \max \left(\theta_{i+1}-\theta_{i}\right)^{3} \quad \text { with }|\lambda|<1 .
\end{aligned}
$$

According to (1), $m \leqq\left(g\left(\theta_{i+1}\right)-g\left(\theta_{i}\right)\right) /\left(\theta_{i+1}-\theta_{i}\right) \leqq M$. Therefore, and because of (3),

$$
\begin{align*}
& \frac{\pi}{n M} \leqq \theta_{i+1}-\theta_{i} \leqq \frac{\pi}{n m} \tag{5}\\
& \qquad \text { for } i=1,2, \cdots, s-1, \text { and } s-1 \leqq \frac{\tau-\sigma}{\pi / n M}<2 n M
\end{align*}
$$

Similarly, since $n g\left(\theta_{1}\right)-n g(\sigma)<\pi$, and $n g(\tau)-n g\left(\theta_{s}\right)<\pi$:

$$
\theta_{1}-\sigma<\frac{\pi}{n m}, \quad \text { and } \quad \tau-\theta_{s}<\frac{\pi}{n m}
$$

Thus $\left|\lambda(s-1) n T \max \left(\theta_{i+1}-\theta_{i}\right)^{3}\right|<2 n M n T \pi^{3} /(n m)^{3}=2 \pi^{3} M T /\left(n m^{3}\right)$, and

$$
\begin{aligned}
& \int_{\theta_{1}}^{\theta_{s}} \cos (n g(\theta)) d \theta=\frac{4}{\pi}\left[\frac{\theta_{s}-\theta_{1}}{2}-I_{\theta_{1} \theta_{s}}\right]+\lambda^{\prime} \frac{2 \pi^{3} M T}{n m^{3}} \\
& \text { with }\left|\lambda^{\prime}\right|<1 .
\end{aligned}
$$

Therefore $(4 / \pi)\left[(\tau-\sigma) / 2-I_{\sigma \tau}\right]$ differs from $\int_{\theta_{1}}^{\theta_{\theta}} \cos (n g(\theta)) d \theta$ absolutely by less than $(2 / \pi)\left(\theta_{1}-\sigma+\tau-\theta_{s}\right)+2 \pi^{3} M T /\left(n m^{3}\right)$, or finally by (5^{\prime})

$$
\begin{equation*}
\left|\int_{\theta_{1}}^{\theta_{\theta}} \cos (n g(\theta)) d \theta-\frac{4}{\pi}\left[\frac{\tau-\sigma}{2}-I_{\sigma \tau}\right]\right|<\frac{C_{1}}{n} \tag{6}
\end{equation*}
$$

where $C_{1}=4 / m+2 \pi^{3} M T / m^{3}$ is independent of r and n.
On the other hand, if $s \geqq 3$, for $i=2,3, \cdots, s-1$:

$$
\begin{gathered}
\int_{\theta_{i-1}}^{\theta_{i+1}} \cos (n g(\theta)) d \theta=\int_{g\left(\theta_{i-1}\right)}^{g\left(\theta_{i+1}\right)} \cos (n g) \frac{d \theta}{d g} d g \\
\frac{d \theta}{d g}=\left(\frac{d \theta}{d g}\right)_{\theta_{i}}+\left(g(\theta)-g\left(\theta_{i}\right)\right)\left(\frac{d^{2} \theta}{d g^{2}}\right)_{\vec{\theta}}
\end{gathered}
$$

with $\bar{\theta}$ between θ_{i} and θ.
By (1), $\left|d^{2} \theta / d g^{2}\right|=\left|g^{\prime \prime}(\theta) /\left(g^{\prime}(\theta)\right)^{3}\right| \leqq T / m^{3}$, and by (3), for θ_{i-1} $\leqq \theta \leqq \theta_{i+1},\left|g(\theta)-g\left(\theta_{i}\right)\right| \leqq \pi / n$. Therefore

$$
\begin{aligned}
& \int_{\theta_{i-1}}^{\theta_{i+1}} \cos (n g(\theta)) d \theta=\left(\frac{d \theta}{d g}\right)_{\theta_{i}} \cdot \int_{g\left(\theta_{i-1}\right)}^{o\left(\theta_{i+1}\right)} \cos (n g) d g+\mu 2 \frac{\pi^{2}}{n^{2}} \frac{T}{m^{3}} \\
& \text { with }|\mu|<1
\end{aligned}
$$

Since $n g\left(\theta_{i-1}\right)$ and $n g\left(\theta_{i+1}\right)$ differ by 2π,

$$
\int_{g\left(\theta_{i-1}\right)}^{o\left(\theta_{i+1}\right)} \cos (n g) d g=0, \quad \text { and }\left|\int_{\theta_{i-1}}^{\theta_{i+1}} \cos (n g(\theta)) d \theta\right|<\frac{2 \pi^{2} T}{n^{2} m^{3}}
$$

Thus

$$
\begin{align*}
\left|\int_{\theta_{1}}^{\theta_{s}} \cos (n g(\theta)) d \theta\right| & <\left(\theta_{s}-\theta_{s-1}\right)+\frac{s-1}{2} \frac{2 \pi^{2} T}{n^{2} m^{3}} \\
& <\frac{\pi}{n m}+\frac{2 \pi^{2} M T}{n m^{3}}=\frac{C_{2}}{n} \tag{7}
\end{align*}
$$

according to (5). Formula (7) is obviously also correct if $s=2$. The term $\theta_{s}-\theta_{s-1}$ may be omitted if s is odd. The constant $C_{2}=\pi / m$ $+2 \pi^{2} M T / m^{3}$ is again independent of r and n.

Combining (6) and (7) we get

$$
\begin{equation*}
\left|\frac{\tau-\sigma}{2}-I_{\sigma \tau}\right|<\frac{C}{n}, \quad \text { with } \quad C=\frac{\pi}{4}\left(C_{1}+C_{2}\right) . \tag{8}
\end{equation*}
$$

In the derivation of (8) it has been assumed that $s \geqq 2$, that there are at least two values of θ in (σ, τ) for which $\cos (n g(\theta))=0$. If there is only one such value in (σ, τ), or none at all, then by $\left(5^{\prime}\right)$

$$
\left|\frac{\tau-\sigma}{2}-I_{\sigma \tau}\right| \leqq \frac{1}{2}(\tau-\sigma)<\frac{1}{2} 2 \frac{\pi}{m n}<\frac{C}{n}, \text { since } \frac{\pi}{m}<\frac{\pi}{4} C_{1}<C .
$$

If $g^{\prime}(\theta) \leqq-m$ throughout (σ, τ), the same conclusion is reached in a similar manner.

Thus (8) is correct for any interval (σ, τ).
From (2) and (8) follows: for any value of r between 0 and 1, the sum of the lengths of all the θ-intervals within \bar{B}^{\prime} where $\cos (n \operatorname{Im} F(z))$ is negative differs from half the sum of the total lengths of the θ-intervals within \bar{B}^{\prime} by less than $S C / n$. Therefore the area of the subset of \bar{B}^{\prime} formed by the points for which $\cos (n \operatorname{Im} F(z))$ is negative differs from $B^{\prime} / 2$ by less than $(S C / n) \cdot \int_{0}^{1} r d r=S C /(2 n)$. Take n so large that $S C /(2 n)<B / 12$. Then, since $B^{\prime}>11 B / 12, \cos (n \operatorname{Im} F(z))$ is negative in a subset of \bar{B}^{\prime} (and therefore of \bar{B}) whose area is greater than $11 B / 24-B / 12>B / 3$. This completes the proof of the lemma.
3. Some additional remarks. Let $f(z)=\coprod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ be further restricted by the condition that $\left|z_{\nu}\right|=1$ for $\nu=1,2, \cdots, n$. Let α and β again be the two largest possible numbers such that $\alpha \leqq A(f)$ $\leqq \pi-\beta$ for every $f(z)$ of this form. In this case the values of α and β are still unknown. It can be shown that $\alpha=\beta$, and that $\alpha \leqq .43$. Dr. Erdös ${ }^{1}$ quotes Mr. Eröd as possessing an unpublished proof that $\alpha>0$.

It is possible, however, to construct polynomials $f(z)=\prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ with $\prod_{\nu=1}^{n}\left|z_{\nu}\right|=1$ such that $A(f)<\epsilon_{1}$, and $1-\epsilon_{2} \leqq\left|z_{\nu}\right| \leqq 1+\epsilon_{2}$ for $\nu=1,2, \cdots, n$, where ϵ_{1} and ϵ_{2} are arbitrarily small positive numbers which are independent of each other.

If $F(z)=b_{1} z+\cdots$ is analytic for $|z| \leqq 1$ and such that the set $B(F)$ and its complement in the unit circle are both simply connected regions, then it can be proved that there exist positive numbers α such that for every $F(z)$ of this kind $\alpha \leqq B(F) \leqq \pi-\alpha$. The largest possible value of α in this case can be shown to be not less than .141 nor greater than 283.

Amherst College

[^1]
[^0]: Presented to the Society, December 31, 1947; received by the editors January 7, 1948.

[^1]: ${ }^{1}$ Paul Erdös, Note on some elementary properties of polynomials, Bull. Amer. Math. Soc. vol. 46 (1940) p. 954.

