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We consider the normal form of the linear partial differential equa­
tion of hyperbolic type 

(1) L[u] S uxy + aux + buy + cu = d. 

I t is well known that if the coefficients of (1) satisfy certain con­
tinuity conditions, a unique solution U(x,y) of (1) can be determined 
over any rectangle with sides parallel to the coordinate axes which 
lies entirely within the domain of continuity of the coefficients of (1) 
by prescribing the solution along any two adjacent sides of the 
rectangle.1 No generality will be lost by assuming that the adjacent 
segments lie on the coordinate axes, so that a vertex of the rectangle 
is on the origin. 

I t will be shown here that for a certain sub-class of equations of 
this type a unique solution is obtainable by prescribing merely two 
partial derivatives of u(x, y), one along each of two adjacent 
sides of the rectangle, tha t is, by prescribing dku(x, y)/dxk\x„o and 
dmu(x, y)/dym\y^o where k and m are any non-negative integers, 
instead of u(x, 0) and u(0, y). This result is obtained by reducing the 
new problem to the classic one (k = m = 0). 

I t should also be noted that the result to be proved complements, 
in a certain sense, results of Bergman2 on elliptic differential equa­
t ions . If a = ^minamnx

myn
1 b = afc~ Ylrn>nCmnXmyn> Cmn^Cnm, a re ent i re 

functions of two complex variables x and y where y is conjugate to x, 
and we write x = X+iY, y = X—iY; then (1) becomes an equation of 
elliptic type in the X, Y plane. I t has been shown, by means of 
Bergman's operator method, that in order to determine the regularity 
domain of a solution [7 = ^mtnUmnx

myn
i Umn — Vnm, from a given 

subsequence { Umk}, k fixed, w = 0 , 1, 2, • • • , it is sufficient to know 
the subsequences {amv), {avm\, {cmv)y v = 0, 1, 2, • • • , &, m = 0, 1, 2, 
3, • • • , of the coefficients in the power series expansion of a and c in 
(1). If, by the same change of variables, the result of the present paper 
is formulated as a theorem for equations of elliptic type, it becomes 
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apparent that our results belong to somewhat the same range of ideas. 
We first treat a simple example which will indicate the method of 

proof in the general case. 
We wish to determine a solution u{x, y) of the partial differential 

equation 

(A) UXy + UX + Uy + U = 0 

which satisfies the initial conditions 

(B) uyy(x, 0) = x, uxx(0, y) = y. 

Differentiating (A) with respect to y> then setting y = 0 and em­
ploying the first of the conditions (B), there results the system of 
ordinary linear differential equations for the functions u(xf 0), 
uy(x, 0) 

uy(x, 0) + u'(x, 0) + uy(x, 0) + u(x, 0) = 0, 

uv(x, 0) + Uy{x, 0) = — x — 1, 

where primes denote derivatives with respect to x. 
The complete integral of the system (C) is given by 

(D) u(x, 0) = Kier* + x, uy(x, 0) =K2e-x - x. 

If each equation of the system (C) is differentiated once, upon ad­
joining to (C) the new equations and setting # = 0 in the resulting 
system, we obtain by employing the initial conditions (B), 

«4(0, 0) + «'(O, 0) + uv(Q, 0) + «(0, 0) = 0, 

*4(0, 0) + «,(0, 0) = - 1, 

«4(0, 0) + w'(0, 0) = - 1, 

«4(0, 0) = - 2. 

Hence uy(0, 0) = 1, w(0, 0 ) = 0 ; thus i£i = 0, K2 = l, and u(x, 0 ) = # , 
uy(x, 0) ~e~x — x. 

By symmetry, w(0, y)=:y, uz(0, y)—e~y—y. 
The original problem has now been reduced to one of the classical 

type, namely, the determination of a solution u(x, y) of (A) satisfying 
the boundary conditions 

(F) u(x, 0) = x, u(0, y) = y. 

Riemann's integration method yields 

o «Jo 
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that is, u(xf y) =yerxjrxe~v. 
The following work follows the above lines. 
We shall use the notation 

d%x) 

dxl = fi(x); 
di+3'u(x, y) 

dxldyi 
= Uij(xt y); 

di+J'L[u] 

dxtdy' 
Lij(u). 

By cxij;^^aij.^(xt y) we shall mean the coefficient of u^(xf y) in 
Lij[u]. The letters k and m will be thought of as fixed integers 
throughout the paper. If in an equation containing x and y such as 
(1), we wish, for example, to change (x, y) to (3, 4), we shall refer to 
it as the equation (1; 3, 4). 

Form the system of equations 

(2) Ln[u] = da (i == 0, • • • , k - l;j = 0, • • • , m - 1) 

and the matrix of the u^ occurring in (2) 

(3) 

UQO UQI 

UkO Ukl Uhn 

In the equations (2) when the terms containing ukp and u^m 

(|3 = 0, • • • , m\ £ = 0, • • • , k) are transposed to the right-hand side, 
there results a system of km equations in km f unctions Uij (i = 0, • • • , 
k — 1 ; j = 0, • • • , w — 1). We shall refer to these as the (2)* equations. 
Since the reordering of a system of equations cannot affect the ab­
solute value of their determinant, we shall call 

(4) A(x, y) 

the absolute value of the determinant of the system (2)* in the vari­
ables Uij, (i = 0, • • • , k — 1; i = 0, • • • , m — 1). The elements of 
A(x, y) are a, b, c and their derivatives. 

The subsets Loj[u]=doj C/ = 0, • • • , m — 1) and Lio[u]=dio 
(i = 0, • • • , & —1) of the system (2)* are fundamental in this paper, 
and we write them in the forms 

yj OLOjiltUu + 2^, OLQj\QtUot = doj 
t t 

(0 £ j £m - 2;t = 0, • • • , j + 1) 

— doj — U\m — bUom 

(j = m - i;t = o, • • • , m - 1), 

(5) 
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<1 otiQ;sïUa + z2 a*o;$ô ÉO = dm 

(6) (0 S < S * - 2 ; { « 0, • • • , t + 1) 

= (fio — Wfci — auko 

(i=z k - 1; ê = 0, . . . , * - 1). 

The determinant |aoy;i*| of the terms Uu in (5) will be denoted by 

(7) B(x, y) = I awn I 0\ ' = 0, • • • , m - 1), 

and the corresponding determinant of (6) by 

(8) C(x, y) = | <x<o;gi I (*, £ = 0, • • • , k - 1). 

We may now state our principal result. 

THEOREM 1. In the equation L[u]~d let a, b, c, d, be of class Ch 

in x and O in y and let f{x), &(?) ^ preassigned functions of classes 
C*+1 and O * 1 respectively, with fk(0) = gm(0). £*/ 

(9) 4(0, 0) ^ o, 

(10) B(x, 0 ) ^ 0 (0 g « < sx), 

(11) C(0, y) * 0 (0 g y < st). 

Under these conditions there exists a unique solution u(x, y) of L[u]~d 
(OSx^Si, 0^y<S2), such that 

(12) uQm(x, 0) = ƒ(*) (0 g x < si), 

(13) uk0(0, y) = g(y) (0 £ y < *,). 

The following proof holds for mk^O. The slight changes necessary 
for the case when m or k is zero will be indicated. 

We shall first prove a series of lemmas. The first three of the lemmas 
will show that all the terms in the matrix (3; 0, 0) are determined 
by the assignment of its first row and last column, or its first column 
and first row, or its last row and last column. 

LEMMA 1. Under the conditions of Theorem 1 the assignment of the 
values of the first row and last column of (3; 0, 0), namely 

«o/(0, 0) = utj (j = 0, • • • , m - 1), 
(14) 

Uim(0, 0) « ƒ<(()) (* = 0, • - • , k) 
together with the equations (2 ; 0, 0) uniquely determine all the terms in 
the matrix (3; 0, 0). 

In using the values (14) in (5; 0, 0), we note that only the terms 
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in uu(0, 0) (/ = 0, • • • , m~l) remain to be found, but since 5(0 , 0) 
7*0, we can solve uniquely for these values. On differentiating the 
equations (5) once with respect to x, the only way terms in U2t(x, y) 
(* = 0, • • • , m —1) can occur is from differentiating the Uu in the 
terms aoj-uUu* This shows tha t the determinant |<*iy.2*| =*£(#, y). 
Hence we may find the U2t(0, 0) (/ = 0, • • • , m — 1) after having 
determined the ^i*(0, 0). Owing to our continuity conditions on 
a, J, c, d, we may differentiate (5) at least k — 1 times with respect to 
x. Hence the lemma is seen to hold. 

Using the equations (6) as we did the equations (5), we may prove 
the following lemma. 

LEMMA 2. Under the conditions of Theorem 1 the assignment of the 
first column and last row of (3; €, 0), namely 

Uio(Ot 0) = u% (i = 0, • • - , * « - 1), 

«**(0, 0) - g,(0) (j - 0, • • • , m) 

together with the equations (2 ; 0, 0) uniquely determine all the terms in 
the matrix (3; 0, 0). 

LEMMA 3. If the conditions of Theorem 1 hold the assignment of values 
to the last row and last column 

«*y(0, 0) = g,(0) (j « 0, • • • , m - 1), 

(16) uim(0, 0) - M0) (i = 0, • • - , k - 1), 

ukm(0, 0) = fk(0) = gm(0) 

together with the system (2; 0, 0) uniquely determine all members of the 
matrix (3; 0, 0). 

This follows from the facts that (16) determine all the right mem­
bers of the system (2; 0, 0)* and the absolute value ^4(0, 0) of the 
determinant of this system of algebraic equations is not zero. 

Since the functions f(x) and g(y) are assumed to be known, we 
may assign the values in (16) ; the resulting values to the elements of 
the matrix (3; 0, 0) will be denoted by 

(17) «„(O, 0) « F4i(f, g). 

In the equations (5 ; x, 0) write 

d 
(18) Uoi(xt 0) = **(*), uu{x, 0) » — z%x) (0 ^ i S m ~ 1), 

dx 
(18') «o-(*. 0) » ƒ(*), uXm(x, 0) - fx(x). 
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This gives us the system of ordinary differential equations 

_^ dz% ~-̂  
22 «o/ii«(*i 0) -- h 2J «o/;o«(«, 0)2* = d0j(x, 0) 

f dx t 

(50 ( O S i g * i - 2 ; * « 0 f - - - , i + l ) 
= doj(x, 0) - ƒ!(*) - b(x, 0)f(x) 

(j = m - 1 ; / = 0, • • • , m - 1). 

We assign as initial values to s°, • • • , zm~l, 

(19) *'(0) = Foi(f, g) (i = 0, • • • , m - 1). 

Since |aoi;i« (%, 0) | = J3(x, 0 ) ^ 0 for 0 ^ x < S i , and because of the 
continuity conditions satisfied by the coefficients of (1), the system 
(5') is seen to have a unique solution3 of class Ck. Since the system 
(2 ; 0, 0) can be formed as follows 

177 tz°^) I*-»] r = ) 7 ^ t^03^' ?) W r > 

we see on adding to the system (5') all equations obtained by dif­
ferentiating it 1, 2, • • • , k — 1 times with respect to #, and then 
putting x = 0, we have the system (2; 0, 0). In this system (18') 
assures 

(20) uim(0, 0) = M0) (i = 0, • • • , *). 

Thus from (17), (19), (20), and Lemma 1 we have: 

LEMMA 4. Under the conditions of Theorem 1 the unique solution of 
equations (50 with initial conditions (19) satisfies the conditions 

dlzi(x) I 
(21) 

dx1 = F<i(f, g) (i = 0, • • • , k; j = 0, • • -, m - 1). 
a?«=0 

In the equations (6; 0, y) we make the replacements 

dwl 

(22) ffc0(0, 3>) = w*(y), ««(0, y) = — - (0 ^ * g * - 1), 
dy 

(22') **o(0, y) = g(y), uJcl(0) y) = gl(y). 
Calling the resulting system of ordinary differential equations (60, 
we assign initial values 

(23) w«(0) = ftotf «) (i = 0f . . - , * - 1). 

We may treat (60 as we treated (SO and get the lemma. 
3 See E. L. I nee, Ordinary differential equations, p. 72. 
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LEMMA 5. Assuming conditions of Theorem 1 hold, the unique solu­
tion of system (60 with initial conditions (23) satisfies the conditions 

dtwHv) 
(24) 

dy 
= Faif, i) (* = 0. • • • . » ! 3 = 0- • • • , * - l ) . 

y»0 

We now return to equation (1) and solve it by the classical theory 
for the unique solution with initial conditions 

(25) «(*, 0) = z°(x), Og x<si, 

(26) «(0, y) = w°(y), 0 â y < sit 

The solution of L[u]~d for 0^x<si, 0^y<S2 so obtained we 
shall denote by U(x, y). Theorem 1 will be complete if we can show 

(27) UU*> 0) = ƒ(*), ff*o(0, y) = g(y), 

and £/ is the only such solution of L[u] —d. 
U(x, y) is unique, for Lemma 3 implies that f(x) and g(y), where 

fk(0) =g«(0), together with (1) determine uniquely (3: 0, 0). Accord­
ingly the other lemmas guarantee the uniqueness of the z]'(x) and 
w*(y) O'^O» ' • •»*» — l ; i = 0, • • - , fe — 1), in particular that of 2°(x) 
and w°(y), and thus that of Z7. 

If from the equations (50, say, we wish to consider a single one, 
for example, the one obtained by setting j = 7, we shall designate it 
by (5') (j^l), and shall use corresponding notation for other equa­
tions picked from sets. 

In equations (50 make the replacements 

dzm di>3+1 

(28) zm = pmf - ^ ^ - i — , 
dx dx 

dpm 

(280 f(*)=pm, / i ( * ) = J 

dx 
This yields m differential equations 

dp**1 

ao/;i,*n(*. 0) — h ao*soj4-i(*i 0 )£ ' + 1 

(5'0 <&'(#) 
= d0|-(sf 0) — X ao/su(ff, 0 ) — ]T) aowiXf 0)z*(x) 

t dx t 

(OSj Sm- 1; / = 0, . . . ,j) 

[(5 ;0 (J — m — 1) need not be written separately since aoi;w+i(#, 0) = 1 
and o£o/;o.i+i(^, 0)=6(x, 0)] . 
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Now by (5; x, 0) (j = 0) and (25), Uoi(x, 0) is a solution of (5") 
( j * 0 ) . By (5') (j=*0), zl(x) is also a solution of (5") (j°*0). (26) and 
Lemma 5 imply that Uoi(x, Q)=*dw0(y)/dy\y-o=*Foi(f, g). But by 
(19), z1(0)~Foi(f, g). Hence Uoi(x, 0)=szl(x). If we use in natural 
order the remaining equations of the set (5")> a similar argument 
will establish that UQJ(X, 0)^=Z1'(X)1 j ~ l , • • • , * » — 1, the only dif­
ference in the discussion being that the identities Uoh(x, 0)~zh(x), 
h — l, • • • , j — 1, must be used together with (25). (50 (j~tn — 1) 
shows that ƒ (x) is a solution of (5") (j = 7» — 1), and (5;x, 0) ( j = m —1) 
together with £/o;(x, 0) =*z3'(x), j~0, • • • , m — 1, show that £/ow(#, 0) 
is also a solution. However, from (26), Uom(0, 0)—dmw°(y)/dym\ysa!0' 
But by prescription, that is, by (180, /(0) ~Fom(f, g), and hence, by 
Lemma 5, f(0) ^dmw°(y)/dym\v^ Therefore Uom(x, 0) =*ƒ(*). It can 
be shown in a similar way that £/AO(0, y) ~g{y)-

The slight change necessary in the case mk = 0 is as follows. Say, 
for example, that & = 0. An entity arising in much the same way 
and playing the same role as an entity (n) in the previous work will 
be denoted by (n). 

Form the system 

(2) Loi[u] = do,- (j « 0, • • • , m - 1) 

and the matrix of the u& occurring in (2) 

~ /«00 Woi ' • * «0m\ 

\Uio «11 • ' • Ulm/' 

(2)* will be formed by transposing to the right-hand side in the system 
(2) those terms containing U\m and u*m. (5) will then be the same as 
(5). The z\x)% i = 0, • • • , w — 1, will be obtainable as before, (5) 
playing the roles of both (2)* and (5). Lemmas 2, 3, and 5 will not be 
used. Solving (1) by the classical theory for the unique solution with 
initial conditions 

(2l) u(x, 0) « *«(*), 

(26) u(0, y) - g(y), 

the rest of the proof will go through as before with Lemma 1 leading 
to uniqueness and g(y) taking the place of w°(y). 
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