NOTE ON A THEOREM DUE TO BORSUK

J. H. C. WHITEHEAD

1. Introduction. Let $A, B \subset A$ and B^{\prime} be compacta, which are ${ }^{1}$ ANR's (absolute neighbourhood retracts). Let $B^{\prime} \subset A^{\prime}$ where A^{\prime} is a compactum, and let $f:(A, B) \rightarrow\left(A^{\prime}, B^{\prime}\right)$ be a map such that $f \mid(A-B)$ is a homeomorphism onto $A^{\prime}-B^{\prime}$. Thus A^{\prime} is homeomorphic to the space defined in terms of A, B, B^{\prime} and the map $g=f \mid B$ by identifying each point $b \in B$ with $g b \in B^{\prime}$. K. Borsuk [3] has shown that A^{\prime} is locally contractible. It is therefore an ANR if $\operatorname{dim} A^{\prime}<\infty$. The main purpose of this note is to prove, without this restriction on $\operatorname{dim} A^{\prime}$:

Theorem 1. A^{\prime} is an $A N R$.
We also derive some simple consequences of this theorem. For example, it follows that the homotopy extension theorem, in the form in which the image space is arbitrary, may be extended ${ }^{2}$ from maps of polyhedra to maps of compact ANR's, P and $Q \subset P$. That is to say, if $f_{0}: P \rightarrow X$ is a given map, the space X being arbitrary, and if $g_{t}: Q \rightarrow X$ is a deformation of $g_{0}=f_{0} \mid Q$, then there is a homotopy $f_{t}: P \rightarrow X$, such that $f_{t} \mid Q=g_{t}$. For let $R=(P \times 0) \cup(Q \times I) \subset P \times I$ andlet $h: R \rightarrow X$ be given by $h(p, 0)=f_{0} p, h(q, t)=g_{t} q(p \in P, q \in Q)$. Since $Q \times I$ is (obviously) a compact ANR it follows from Theorem 1, with $A=Q \times I, B=Q \times 0, B^{\prime}=P \times 0, A^{\prime}=R$ that R is an ANR. Therefore R is a retract of some open set $U \subset P \times I$. If $\theta: U \rightarrow R$ is a retraction, then $h \theta: U \rightarrow X$ is an extension of $h: R \rightarrow X$ throughout U. This is all we need for the homotopy extension theorem (see [5, pp. 86, 87]). Thus we have the corollary:

Corollary. A given homotopy, $g_{i}: Q \rightarrow X$, of $g_{0}=f_{0} \mid Q$, can be extended to a homotopy, $f_{t}: P \rightarrow X$, where P and $Q \subset P$ are compact $A N R ' s$ and $f_{0}: P \rightarrow X$ is a given map of P in an arbitrary space X.

We also use Theorem 1 to prove another theorem. We shall describe a $\operatorname{map} \xi: X \rightarrow Y$ as a homotopy equivalence if, and only if, there is a map, $\eta: Y \rightarrow X$, such that $\eta \xi \simeq 1, \xi \eta \simeq 1$, where X and Y are any two spaces. Thus the statement that $\xi: X \rightarrow Y$ is a homotopy equivalence implies that X and Y are of the same homotopy type. Let $A, B, A^{\prime}, B^{\prime}$ and $f:(A, B) \rightarrow\left(A, B^{\prime}\right)$ be as in Theorem 1 and let $g=f \mid B$.

[^0]Then we shall prove:
Theorem 2. If $g: B \rightarrow B^{\prime}$ is a homotopy equivalence so is $f: A \rightarrow A^{\prime}$.
For example B^{\prime} may consist of a single point, in which case we describe the identification of B with B^{\prime} as the operation of shrinking B into a point. Then it follows from Theorem 2 that any (compact) absolute retract, $B \subset A$, may be shrunk into a point, without altering the homotopy type of A. As another example let A and B^{\prime} be cell complexes ${ }^{3}$ and B a sub-complex of A. Then A^{\prime} is also a cell complex, subject to suitable conditions on the $\operatorname{map}^{4} g=f \mid B$, and Theorem 2 shows that certain combinatorial operations do not alter the homotopy type of A. For example, if B is the n-section of A and if B^{\prime} is any complex, of at most n dimensions, which is of the same homotopy type as B, then there is a complex, A^{\prime}, of the same homotopy type as B, whose n-section is B^{\prime}.
2. Another theorem. We prove Theorem 1 by means of another theorem. Let X and $Y \subset X$ be compacta and let Y be an ANR. Given $\rho>0$ let $V_{\rho} \subset X$ be the subset consisting of points whose distances from Y are less than ρ. We assume that
(a) given $\epsilon>0$ there is a $\rho(\epsilon)>0$ and an ϵ-homotopy, $\theta_{t}: X \rightarrow X$, such that $\theta_{0}=1, \theta_{t} \mid Y=1, \theta_{1} V_{\rho(\epsilon)}=Y$,
(b) given $\epsilon, \rho>0$ there is a $u(\epsilon, \rho)>0$ such that any partial realization, $g: L \rightarrow X-V_{\rho}$, whose mesh does not exceed $u(\epsilon, \rho)$, of a finite simplicial complex, K, can be extended to a full realization, $f: K \rightarrow X$, whose mesh does not exceed $\epsilon, u(\epsilon, \rho)$ being independent of K and L.

Then we prove:
Theorem 3. Subject to these conditions X is an $A N R$.
For this we shall need a sharpened form of the homotopy extension theorem. Let P and $Q \subset P$ be compacta and let $f_{0}: P \rightarrow M$ be a given map of P in a metric space M. Let $g_{t}: Q \rightarrow M$ be an ϵ-deformation of $g_{0}=f_{0} \mid Q$. Assume that either
(1) M is a (separable) $A N R$ or that
(2) P is a finite polyhedron and Q a sub-polyhedron.

Then we have:
Lemma 1. Given $\epsilon^{\prime}>0$ there is an $\left(\epsilon+\epsilon^{\prime}\right)$-deformation, $f_{t}: P \rightarrow M$, such that $f_{t} \mid Q=g_{t}$.

[^1]By way of proof it is sufficient to add a few comments to a standard proof of the homotopy extension. (See [5, pp. 86, 87].) Let $R=(P \times 0)$ $\cup(Q \times I) \subset P \times I$ and let $h: R \rightarrow M$ be given by $h(p, 0)=f_{0} p, h(q, t)=g_{t} q$ ($p \in P, q \in Q$). If P is a polyhedron and Q a sub-polyhedron, then R is a polyhedron and hence a neighbourhood retract of $P \times I$ (in fact R is a deformation retract of $P \times I$). Therefore h can be extended throughout some neighbourhood, $U \subset P \times I$, of R, as it can be if M is an ANR and P, Q arbitrary compacta. There is a neighbourhood, $V \subset P$, of Q such that $V \times I \subset U$. Since Q is compact we may take V to be the neighbourhood given by $\delta(p, Q)<\rho$, for some $\rho>0$, where $\delta\left(p, p^{\prime}\right)$ is a distance function in P. On following the argument given by Hurewicz and Wallman [5, pp. 86, 87] it is easily seen that the extension $f_{t}: P \rightarrow M$ is an $\left(\epsilon+\epsilon^{\prime}\right)$-deformation provided ρ is sufficiently small.
We now proceed to prove Theorem 3 by showing that X is $L C^{*}$, as defined by Lefschetz. ${ }^{5}$ Given $\epsilon>0$ let $\eta^{\prime}=\eta(\epsilon / 2) / 4, \rho^{\prime}=\rho\left(\eta^{\prime}\right) / 2$, where η is an extension function ${ }^{6}$ for Y and $\rho\left(\eta^{\prime}\right)$ means the same as in the condition (a). Let

$$
\xi_{1}(\epsilon)=\min \left(2 \eta^{\prime}, \rho^{\prime}\right)
$$

We shall prove that

$$
\xi(\epsilon)=u\left\{\xi_{1}(\epsilon), \rho^{\prime}\right\}
$$

is an extension function for X. Let K be a finite simplicial complex and $L \subset K$ a sub-complex, which contains all the vertices of K. Let $g: L \rightarrow X$ be a partial relization of K, whose mesh does not exceed $\xi(\epsilon)$. We first assume that $s \subset L$ if $g(s \cap L) \subset X-V_{\rho^{\prime}}$, where s is the closure of any simplex in K. Let $K_{1} \subset K$ be the sub-complex consisting of all the (closed) simplexes, $s \in K$, such that $g(s \cap L)$ meets $V_{\rho^{\prime}}$. Then $K=K_{1} \cup L$. Let $L_{1}=K_{1} \cap L, g_{1}=g \mid L_{1}$. Then it is sufficient to prove that g_{1} can be extended to a full realization, $f_{1}: K_{1} \rightarrow X$, whose mesh does not exceed ϵ. For since $K_{1} \cap L=L_{1}, f_{1}\left|L_{1}=g\right| L_{1}$, the desired realization, $f: K \rightarrow X$, will be given by $f|L=g, f| K_{1}=f_{1}$. Clearly $\xi(\epsilon) \leqq \xi_{1}(\epsilon)$ and we shall prove this special case on the weaker assumption that the mesh of $g: L \rightarrow X$ does not exceed $\xi_{1}(\epsilon)$.

Since $\xi_{1}(\epsilon) \leqq \rho^{\prime}$ we have $g_{1} L_{1} \subset V_{2 \rho^{\prime}}=V_{\rho}$ where $\rho=\rho\left(\eta^{\prime}\right)$. Let $\theta_{t}: X \rightarrow X$ be the η^{\prime}-deformation associated with V_{ρ} as in condition (a). Since $K_{1}^{0} \subset K^{0} \subset L, K_{1}^{0} \subset K_{1}$, we have $K_{1}^{0} \subset L_{1}$. Also $\theta_{1} V_{\rho} \subset Y$. Therefore $\theta_{1} g_{1}: L_{1} \rightarrow Y$ is a partial realization of K_{1} in Y, whose mesh does not exceed

[^2]$$
\xi_{1}(\epsilon)+2 \eta^{\prime} \leqq 2^{-1} \eta(\epsilon / 2)+2^{-1} \eta(\epsilon / 2)=\eta(\epsilon / 2)
$$

Therefore $\theta_{1} g_{1}: L_{1} \rightarrow Y$ can be extended to a full realization, $f_{0}: K_{1} \rightarrow Y$, whose mesh does not exceed $\epsilon / 2$. By Lemma 1 there is an ($\eta^{\prime}+\epsilon / 8$)homotopy, $f_{t}: K_{1} \rightarrow X$, such that $f_{t} \mid L_{1}=\theta_{1-t} g_{1}$. Clearly $\eta(\epsilon / 2) \leqq \epsilon / 2$, whence $\eta^{\prime}+\epsilon / 8 \leqq \epsilon / 8+\epsilon / 8=\epsilon / 4$. Therefore the mesh of $f_{1}: K_{1} \rightarrow X$ does not exceed $\epsilon / 2+2\left(\eta^{\prime}+\epsilon / 8\right) \leqq \epsilon$ and $f_{1} \mid L_{1}=\theta_{0} g_{1}=g_{1}$. Therefore this special case is established.

In general let $K_{0} \subset K$ be the sub-complex consisting of all the closed simplexes, $s \in K$, such that $g(s \cap L) \subset X-V_{\rho^{\prime}}$. Let $L_{0}=K_{0} \cap L$. Then $g \mid L_{0}$ is a partial realization of K_{0}, whose mesh does not exceed $\xi(\epsilon)=u\left\{\xi_{1}(\epsilon), \rho^{\prime}\right\}$. By condition (b) it can be extended to a full realization, $f_{0}: K_{0} \rightarrow X$, of mesh at most $\xi_{1}(\epsilon)$. Since $K_{0} \cap L=L_{0}$, $f_{0}\left|L_{0}=g\right| L_{0}$, a map, $g^{\prime}: K_{0} \cup L \rightarrow X$, is defined by $g^{\prime}\left|K_{0}=f_{0}, g^{\prime}\right| L=g$ and its mesh does not exceed $\xi_{1}(\epsilon)$. Therefore L may be replaced by $K_{0} \cup L$ and the theorem follows from what we have already proved.
3. Proof of Theorem 1. We shall prove Theorem 1 by showing that the conditions (a) and (b) in §2 are satisfied when $X=A^{\prime}, Y=B^{\prime}$. Let $\delta\left(a_{1}, a_{2}\right)$ be a distance function in A and let $\epsilon>0$ be given. Since A is compact there is a $\lambda(\epsilon)>0$ such that $\delta^{\prime}\left(f a_{1}, f a_{2}\right)<\epsilon$ provided $\delta\left(a_{1}, a_{2}\right)$ $<\lambda(\epsilon)$, where $\delta^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ is a distance function in A^{\prime}. Let $U_{\gamma} \subset A$ be the neighbourhood of B which consists of all points, $a \in A$, such that $\delta(a, B)<\gamma$. As shown by Borsuk [3], there is a homotopy, $\phi_{t}: \bar{U}_{\gamma} \rightarrow A$, such that $\phi_{0}=1, \phi_{t} \mid B=1, \phi_{1} \bar{U}_{\gamma}=B$ for some $\gamma>0$. By uniform continuity there is a $\mu>0(\mu \leqq \gamma)$ such that $\delta\left(\phi_{t} a, b\right)=\delta\left(\phi_{t} a, \phi_{t} b\right)<\lambda(\epsilon) / 4$ if $\delta(a, b) \leqq \mu$. Hence $\phi_{t} \mid \bar{U}_{\mu}$ is a $\lambda(\epsilon) / 2$-deformation. By Lemma 1 , $\phi_{t} \mid \bar{U}_{\mu}$ can be extended to a $\lambda(\epsilon)$-deformation $\psi_{t}: A \rightarrow A\left(\psi_{0}=1\right)$. Let $\theta_{t}: A^{\prime} \rightarrow A^{\prime}$ be given by $\theta_{t}\left|B^{\prime}=1, \theta_{t}\right| f A=f \psi_{t} f^{-1} \mid f A$. Since $f^{-1} \mid\left(A^{\prime}-B^{\prime}\right)$ is single-valued and since $f^{-1} B^{\prime}=B$ and $\psi_{t} \mid B=1$ it follows that θ_{t} is single-valued. It is therefore continuous. ${ }^{6}$ Since $\theta_{t} \mid B^{\prime}=1$ and the diameter of the trajectory, $\psi_{t} a$, of any point $a \in A$ is less than $\lambda(\epsilon)$ it follows that θ_{t} is an ϵ-deformation. Also $\theta_{1}\left(f U_{\mu}\right)=f \psi_{1} U_{\mu}=f B \subset B^{\prime}$. Therefore $\theta_{1}\left(B^{\prime} \cup f U_{\mu}\right)=B^{\prime}$. Since $f \mid(A-B)$ is a homeomorphism onto $A^{\prime}-B^{\prime}$ and $f B \subset B^{\prime}$ it follows that $B^{\prime} \cup f U_{\mu}$ is an open subset of A^{\prime}. For

$$
\begin{aligned}
f\left(A-U_{\mu}\right) & =f\left\{(A-B)-\left(U_{\mu}-B\right)\right\} \\
& =A^{\prime}-B^{\prime}-f\left(U_{\mu}-B\right) \\
& =A^{\prime}-\left(B^{\prime} \cup f U_{\mu}\right) .
\end{aligned}
$$

But $A-U_{\mu}$ is compact, whence $f\left(A-U_{\mu}\right)$ is closed and $B^{\prime} \cup f U_{\mu}$ open.

[^3]Therefore there is a $\rho(\epsilon)>0$ such that $V_{\rho(\epsilon)} \subset B^{\prime} \cup f U_{\mu}$, whence $\theta_{1} V_{\rho(\epsilon)}$ $=B^{\prime}$. This establishes (a).

Let $\alpha\left(\epsilon^{\prime}\right)$ be an extension function for A. Since $f^{-1} \mid\left(A^{\prime}-B^{\prime}\right)$ is a homeomorphism and $A^{\prime}-V_{\rho}$ is a compact subset of $A^{\prime}-B^{\prime}$, for a given $\rho>0$, there is a $u(\epsilon, \rho)>0$ such that, if $\delta^{\prime}\left(a^{\prime}, a^{\prime \prime}\right)<u(\epsilon, \rho)$ $\left(a^{\prime}, a^{\prime \prime} \subset A^{\prime}-V_{\rho}\right)$, then $\delta\left(f^{-1} a^{\prime}, f^{-1} a^{\prime \prime}\right)<\alpha\{\lambda(\epsilon)\}$. If $\psi: L \rightarrow A^{\prime}-V_{\rho}$ is a partial realization, of mesh at most $u(\epsilon, \rho)$, of a complex K, it follows that $f^{-1} \psi: L \rightarrow A$ is of mesh at most $\alpha\{\lambda(\epsilon)\}$. The latter can therefore be extended to a full realization, $\phi: K \rightarrow A$, of mesh at most $\lambda(\epsilon)$. Then $\phi^{\prime}=f \phi: K \rightarrow A^{\prime}$ is a realization of K, whose mesh does not exceed ϵ. Moreover $f \phi \mid L=f f^{-1} \psi=\psi$. Therefore (b) is satisfied and Theorem 1 is established.
4. Proof of Theorem 2. We first prove a lemma. Let X, Y be topological spaces ${ }^{7}:$ let $X_{0} \subset X, Y_{0} \subset Y$ be closed subsets and let $\phi:\left(X, X_{0}\right) \rightarrow\left(Y, Y_{0}\right)$ be a map such that $\phi \mid X-X_{0}$ is a homeomorphism onto $Y-Y_{0}$. Moreover let the topology of Y be such that a subset $F \subset Y$ is closed if, and only if, $F \cap Y_{0}$ and $\phi^{-1} F$ are both closed.

Lemma 2. If X_{0} is a deformation retract ${ }^{8}$ of X, then Y_{0} is a deformation retract of Y.

After replacing X by a homeomorph, if necessary, we assume that it has no point in common with Y_{0} and we unite X, Y_{0} in the space, $Q=X \cup Y_{0}$, of which X and Y_{0}, each with its own topology, are closed subspaces. Then Y has the identification topology ${ }^{6}$ determined by the map $\psi: Q \rightarrow Y$, where $\psi|X=\phi, \psi| Y_{0}=1$. Let $\xi_{t}: X \rightarrow X$ be a homotopy such that $\xi_{0}=1, \xi_{t} \mid X_{0}=1, \xi_{1} X=X_{0}$ and let ξ_{t} be extended throughout Q by taking $\xi_{t} \mid Y_{0}=1$. Let $\eta_{t}=\psi \xi_{t} \psi^{-1}: Y \rightarrow Y$. Clearly $\psi^{-1} \mid Y-Y_{0}$ is single-valued. Also $\psi^{-1} Y_{0}=X_{0} \cup Y_{0}$. Since $\xi_{t} \mid X_{0} \cup Y_{0}=1$ it follows that η_{t} is single-valued and hence continuous. ${ }^{5}$ Obviously $\eta_{0}=1, \eta_{t} \mid Y_{0}=1, \eta_{1} Y=Y_{0}$, which establishes the lemma.

Notice that the topology of Y certainly satisfies the above condition if X is compact (that is, bi-compact) and if Y is a Hausdorff space. For let this be so and let $F \subset Y$ be such that $\phi^{-1} F$ and $F \cap Y_{0}$ are both closed. Then $\phi^{-1} F$ is compact, whence $\phi \phi^{-1} F$ is also compact and hence closed. But $\phi \phi^{-1} F=F \cap \phi X$ and

$$
F=(F \cap \phi X) \cup\left(F \cap Y_{0}\right)
$$

[^4]whence F is closed. The converse follows from the continuity of ϕ and the fact that Y_{0} is closed.

We now turn to Theorem 2. We recall that $f:(A, B) \rightarrow\left(A^{\prime}, B^{\prime}\right)$ is such that $f \mid(A-B)$ is a homeomorphism onto $A^{\prime}-B^{\prime}$ and $g=f \mid B$ is a homotopy equivalence. Replacing A, A^{\prime} by homeomorphs, if necessary, we assume that no two of the spaces $A, A^{\prime}, A \times I$ have a point in common. We form the mapping cylinder, Γ, of the map f by identifying ($a, 0) \in A \times I$ with a and ($a, 1$) with $f a \in A^{\prime}$ for each ${ }^{9}$ $a \in A$. The theorem will follow when we have proved that A is a deformation retract ${ }^{10}$ of Γ.

Let $C=(A \times 0) \cup(B \times I)$. Then C is an ANR, as shown in §1. Let $\delta_{s}: A \times I \rightarrow A \times I$ be the retracting deformation of $A \times I$ onto $A \times 0$, which is given by $\delta_{s}(a, t)=(a, t-s t)(0 \leqq s \leqq 1)$. Then $\delta_{s} C \subset C$ and it follows that C is a deformation retract ${ }^{10}$ of $A \times I$. Let $\phi: A \times I \rightarrow \Gamma$ be the map which is given by $\phi(a, 0)=a, \phi(a, 1)=f a, \phi(a, t)=(a, t)$ if $0<t<1$. Since $f B \subset B^{\prime}$ and $f \mid(A-B)$ is a homeomorphism onto $A^{\prime}-B^{\prime}$ it follows that $\phi \mid(A \times I)-(B \times 1)$ is a homeomorphism onto $\Gamma-B^{\prime}$. Therefore $\phi \mid(A \times I)-C$ is a homeomorphism onto $\Gamma-\left(B^{\prime} \cup \phi C\right)$. It follows from Lemma 2 that $B^{\prime} \cup \phi C$ is a deformation retract of Γ. Since $g=f \mid B$ is a homotopy equivalence, B is a deformation retract ${ }^{10}$ of $\Gamma_{g}=B^{\prime} \cup_{\phi}(B \times I)$, which is the mapping cylinder of $g: B \rightarrow B^{\prime}$. A homotopy, $\eta_{s}: \Gamma_{g} \rightarrow \Gamma_{g}$, such that $\eta_{0}=1$, $\eta_{s} \mid B=1, \eta_{1} \Gamma_{o}=B$, can be extended throughout $B^{\prime} \cup \phi C=B^{\prime} \cup \phi(B \times I)$ $\cup A$ by writing $\eta_{s} \mid A=1$. The result is a retracting deformation of $B^{\prime} \cup \phi C$ onto A. Therefore A is a deformation retract of $B^{\prime} \cup \phi C$ and hence of Γ, which proves the theorem.
5. Note on identification spaces. ${ }^{11}$ Let $\phi: P \rightarrow X$ be a map of a space P onto a space X, which has the identification topology determined by ϕ. That is to say a subset $X_{0} \subset X$ is closed (open) if, and only if, $\phi^{-1} X_{0}$ is closed (open). A subset $P_{0} \subset P$ is said to be saturated (with respect to ϕ) if, and only if, $P_{0}=\phi^{-1} \phi P_{0}$. Therefore $X_{0} \subset X$ is closed if, and only if, it is the image under ϕ of a saturated closed set $P_{0}=\phi^{-1} X_{0}$. If P is compact and if X is a Hausdorff space then X certainly has the identification topology determined by ϕ. For in this case, if $P_{0} \subset P$ is closed, and hence compact, ϕP_{0} is compact, and hence closed, whether P_{0} is saturated or not.

Let $f: P \rightarrow Z$ be a map of P in any space Z.

[^5]Lemma 3. If X has the identification topology determined by ϕ, then the transformation $f \phi^{-1}: X \rightarrow Z$ is continuous if it is single-valued.

If $p \in P$, then $p \in \phi^{-1} \phi p$, whence $f p \in f \phi^{-1} \phi p$. If $f \phi^{-1}$ is single-valued it follows that $f p=f \phi^{-1} \phi p$, or that $\left(f \phi^{-1}\right) \phi=f$. Therefore the lemma follows from Theorem 1 on p. 53 of [10].

Let X have the identification topology determined by $\phi: P \rightarrow X$ and let $h: P \times I \rightarrow X \times I$ be given by $h(p, t)=(\phi p, t)(p \in P, 0 \leqq t \leqq 1)$. Then it follows from Lemma 4 below that $X \times I$ has the identification topology determined by h. Therefore we have the following corollary to Lemma 3, with P, X, ϕ and f replaced by $P \times I, X \times I, h$ and $f: P \times I \rightarrow Z$, where $f(p, t)=f_{t} p$.

Corollary. If $f_{t}: P \rightarrow Z$ is a given homotopy in any space, Z, then $f_{t} \phi^{-1}: X \rightarrow Z$ is continuous if it is single-valued.

Let $\psi: Q \rightarrow Y$ be a map of a space, Q, onto a space, Y, which has the identification topology determined by ψ and which satisfies the following condition. Each point in any saturated open set, $V \subset Q$, is contained in a saturated open set, whose closure is a compact subset of V. This condition is satisfied if, for example, Q and Y are compacta. For in this case, if $q \in V$, there is a neighbourhood, $W \subset Y$, of ψq, such that $\bar{W} \subset \psi V$. Then $\psi^{-1} W$ is a saturated open set, whose (compact) closure is contained in V. In particular the condition is satisfied if $Q=Y=I$ and $\psi=1$.

Let X, Y have the identification topologies determined by maps $\phi: P \rightarrow X, \psi: Q \rightarrow Y$, which are onto X and Y, and let Y satisfy the above condition. Let $h: P \times Q \rightarrow X \times Y$ be given by $h(p, q)=(\phi p, \psi q)$ ($p \in P, q \in Q$). Then we have:

Lemma 4. The space $X \times Y$ has the identification topology determined by h.

Let $W \subset P \times Q$ be an open subset, which is saturated with respect to h, and let (x_{0}, y_{0}) be an arbitrary point in $h W$. Then we have to prove that there are open sets $U \subset P, V \subset Q$, which are saturated with respect to ϕ, ψ and are such that

$$
\left(x_{0}, y_{0}\right) \in \phi U \times \psi V \subset h W
$$

Let $p_{0} \in \phi^{-1} x_{0}, q_{0} \in \psi^{-1} y_{0}$ and let

$$
\left(p_{0} \times Q\right) \cap W=p_{0} \times Q_{0}
$$

Then it is easily verified that Q_{0} is an open subset of Q, which is saturated with respect to ψ. Therefore q_{0} is contained in a saturated
open set, $V \subset Q$, such that \bar{V} is a compact subset of Q_{0}. Let U be the totality of all points, $p \in P$, such that $p \times \bar{V} \subset W$. Then $p_{0} \in U$ and $U \times \bar{V} \subset W$, whence

$$
\left(x_{0}, y_{0}\right) \in \phi U \times \psi V=h(U \times V) \subset h W
$$

and the lemma will follow when we have proved that U is a saturated, open subset of P.

If X_{0}, Y_{0} are any subsets of X, Y we have $h^{-1}\left(X_{0} \times Y_{0}\right)=\phi^{-1} X_{0}$ $\times \psi^{-1} Y_{0}$, whence

$$
\phi^{-1} \phi U \times \bar{V} \subset \phi^{-1} \phi U \times \psi^{-1} \psi \bar{V}=h^{-1} h(U \times \bar{V}) \subset h^{-1} h W=W
$$

Therefore $\phi^{-1} \phi U \subset U$, whence $\phi^{-1} \phi U=U$, that is, U is saturated. Let p be any point in U. Then $p \times \bar{V} \subset W$ and since W is open and \bar{V} is compact it is easily proved that there is an open set, $N \subset P$, such that $p \in N$ and $N \times \bar{V} \subset W$. Therefore $N \subset U$. Therefore U is open and the lemma is established.

References

1. S. Lefschetz, Algebraic topology, Princeton, 1942.
2. -, Topics in topology, Annals of Mathematics Studies, Princeton, 1942.
3. K. Borsuk, Fund. Math. vol. 24 (1935) pp. 249-258.
4. Sze-Tsen Hu, C. R. Acad. Sci. URSS. vol. 57 (1947), pp. 231-234.
5. W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941.
6. J. H. C. Whitehead, Comment, Math. Helv. vol. 22 (1949).
7. R. H. Fox, Ann. of Math. vol. 44 (1943) pp. 40-50.
8. H. Samelson, Ann. of Math. vol. 45 (1944) pp. 448-449.
9. P. Alexandroff and H. Hopf, Topologie, Berlin, 1935, and Ann Arbor, 1945.
10. N. Bourbaki, Topologie générale, Chap. I, Structures topologiques, Paris, 1940. (Actualités Scientifiques et Industrielles, no. 858.)
11. ——, Topologie générale, chap. III, Paris, 1942. (Actualités Scientifiques et Industrielles, No. 916.)

Magdalen College, Oxford University

[^0]: Received by the editors January 26, 1948.
 ${ }^{1}$ For an account of these spaces, on which this note is based, see [2]. Numbers in brackets refer to the references cited at the end of the paper.
 ${ }^{2}$ Cf. [4].

[^1]: ${ }^{8}$ That is, a complex of the sort defined in [6], and in a forthcoming book by S. Eilenberg and N. E. Steenrod.
 ${ }^{4}$ For example, $g B^{n} \subset B^{\prime n}$ for each $n=0,1, \cdots$, where K^{n} denotes the n-section of a complex, K, or $A^{n} \subset B, g B \subset B^{\prime n}$ for a particular value of n.

[^2]: ${ }^{5}[2, \mathrm{pp} .82,83,84]\left(\mathrm{N} . \mathrm{B} . K^{\circ} \subset L\right)$.

[^3]: ${ }^{6}$ See $\$ 5$ below.

[^4]: ${ }^{7}$ We do not need to assume that X and Y satisfy any separation axioms.
 ${ }^{8}$ Following Lefschetz [1, p. 40] we do not admit that X_{0} is a deformation retract of X unless there is a retracting deformation throughout which each point of X_{0} is held fixed (see [7]).

[^5]: ${ }^{9}$ The points in A and A^{\prime} shall retain their individualites in Γ, so that $A, A^{\prime} \subset \Gamma$.
 ${ }^{10}$ See [7, Theorems 1.4 and 3.7] and [8].
 ${ }^{11}$ Cf. [9, pp. 61 et seq.] and [10, pp. 52 et seq.]. Concerning the theorem on p. 56 of [10] and Lemma 4 below see the correction at the beginning of [11].

