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INTO MULTIPLICATIVE SYSTEMS 

GRACE E. BATES AND FRED KIOKEMEISTER 

The study of normality theories for general quasigroups and loops 
became productive when that study was restricted to a study of 
homomorphisms of quasigroups on quasigroups.1 The existence of a 
loop with homomorphic image which is not a quasigroup is then 
pertinent to this study. In this note we exhibit such a loop and show 
that certain properties of our example are necessary. In particular, if 
the homomorphic image of a quasigroup is a finite or an associative 
multiplicative system, this image is a quasigroup. A deeper statement 
is that of Theorem 4—finiteness of the kernel of a loop homomorph-
ism into a multiplicative system is a sufficient condition for the 
image of this homomorphism to be a loop. 

We make use of the following definitions: A multiplicative system 
M is a nonvacuous set of elements a, b, c, • • • such that to each 
ordered pair of elements a, b, there corresponds in M a uniquely de­
fined element ab called the product. If the product is defined for a 
(possibly vacuous) subset of the set of ordered pairs, then M is called 
a partial multiplicative system. If Mi and M2 are partial multiplica­
tive systems, Mx is said to be imbedded in Af2 if M1QM2 and products 
in M2 coincide with those in M\ whenever they are defined in M\. A 
partial multiplicative system has an identity element e if the products 
ea and ae are defined for each element a and ea — ae~a. A mapping of 
a multiplicative system M on a multiplicative system M which pre­
serves products is called a homomorphism of M. A multiplicative 
system G in which the equations ax=*b and ya — b have unique solu­
tions for each pair of elements a, bin G is called a quasigroup. A loop 
is a quasigroup with identity element. 

THEOREM 1. If J is a partial multiplicative system, then J can be 
imbedded in a multiplicative system M which has the additional prop­
erties'. 

(1) If a and b are elements of M, there is at least one x and at least 
one y in M such that ax — b and ya**b. 

(2) If x^y but ax— ay {or xa=*ya) in M, then a> x, y> and ax —ay 
{or xa — ya) are all in J. 

Presented to the Society, December 31, 1948; received by the editors January 26, 
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1 Cf. [1, p. 513]; [2, p. 450]; [3, p. 769]; [4, Theorem 10A]; and [5]. (Numbers 
in brackets refer to the bibliography.) 
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(Note that (1) asserts that all equations are solvable in ikf, while 
(2) states that the solutions are unique except possibly for those 
equations possessing in J more than one solution. Hence, in particular, 
if J has both cancellation laws, M is a quasigroup.) 

We define first an elementary extension K of a partial multiplica­
tive system / as follows : Let K consist of all elements of / together 
with new elements zab, xab> yab defined in the following manner: 

Each ordered pair of elements a, b in J for which ab is not in J 
gives rise to an element zab in K, the element zab being uniquely 
defined by the relation Zab — ab and the requirement that zab~zCd if 
and only if a — c and b — d. Similarly, to each ordered pair of elements 
in ƒ for which there is no x in / satisfying xa — ô, there corresponds an 
element xab in K for which {xab)a — b is the defining relation, and to 
each ordered pair of elements a, b in J for which there is no y in / 
satisfying ay — bt there corresponds an element yab in K defined by 
the relation a(yab) — b. Again, xab — xCd or yab — ycd if and only if a — c 
and b — d. 

The set K is a partial multiplicative system having the following 
properties: 

(i) If a, b is an ordered pair of elements in / , ab is a uniquely de­
fined element of K. 

(ii) If a and b are elements of J , there is at least one x and at least 
one y in K such that ax — b and ya — b. 

(iii) If X7*y, but ax —ay (or xa —ya) in Af, then a, x, y, and ax — ay 
(or xa = ya) are all in J. 

Consider the chain of partial multiplicative systems 

/ = / o C ; 1 c ; 2 c . . . c / i c ji+1 c .. . 
where Ji+i is an elementary extension of / • for i ===== 1, 2, • • • . Let 

M = [}Ji 

be the set-theoretic sum2 of the /». 
If a and b are elements of M, there exists an integer k such that 

a and b are elements of /&, and therefore there exists a unique element 
ab in 7A,+I. Thus to each ordered pair of elements ayb in M there cor­
responds a product ab in ikf. Furthermore, if a and 6 are in ƒ&, then 
/fc+i contains elements x and y such that ax — b and ya — b. 

\i xi£y, but ax ==03/ in Af, then a, xy y, and ax==aj all lie in some 
Jk and X7*y in /&. It follows that a, #, y, and ax —ay are elements of 
J\-, i — k — 1, £ — 2, • • • , 0; that is, these elements lie in / . This 
proves the theorem. 

2 Cleaily M is countable if / is countable. 
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COROLLARY 1. If J is a partial multiplicative system with identity 
element e, then J may be imbedded in a multiplicative system M with 
identity e, having properties (1) and (2) of the theorem. 

For, in the construction of the elementary extension K of J", we 
require now only the additional condition imposed on the symbols 
Zaby Xàbt and y^ that they satisfy the relations (Zab)e — e(zab) ~Zab, and 
so forth. 

Suppose, now, that / is commutative (that is, ab is in J if and only 
if ba is in / , and ab — ba). Then if ab is undefined in J, ba is also un­
defined, and we may let Zab^ab — ba in K. Similarly, if there is in J 
no solution x of the equation xa~b> there is no solution of ay**b, 
and we may define Sab — Xab—yab in K by the relations (sab)a=*a(sab) 
— 6. Hence we have the following corollary. 

COROLLARY 2. If J is a partial multiplicative system which is com­
mutative, then J may be imbedded in a commutative multiplicative sys* 
tern M having properties (1) and (2) of the theorem. 

We shall employ Theorem 1 in constructing an example as follows : 
Let / be the set consisting of the four elements 0i, 02, 0s, 04 with 

the following products defined: 

0i0* = PkPi = 0*?, k = 1, 2, 3, 4, 

0202 = 0204 » 0402 - 0404 = 03-

It is to be noted that / is a commutative partial multiplicative sys­
tem with identity element 0i. The equation 02X=s03 has two distinct 
solutions in / , and thus J cannot be imbedded in a quasigroup. 

Let / be imbedded in a system M, as in Theorem 1, with elements 
0fc, & = l, 2, 3, • • • . By Corollary 1, 0i may be taken to be the 
identity element of M. Then M is a multiplicative system with the 
following properties: 

(1) There exist positive integers h and k such that for each pair 
Pi and 0m, PSh^pm and 0*0» =0W. 

(2) If 0t-0*=0<0*, or if 0/>0i=0*0<, where h<k, then A = 2, k = 4, and 
i — 2 or i=4 . 

Let A be a countably infinite loop3 with elements ai, a^ &z, • • • 
where OL\ is the identity of A. We construct a system G whose ele­
ments are the ordered pairs of elements (0*-, aj), i, j=*l, 2, 3, • • • , 
with 0< in M and ay in A.A The product of two elements in G is defined 
by: 

8 4̂ may be a group. 
4 A similar construction has been employed by Bruck; see [4, p. 166]. 
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(P) (ft, «/)(/»*, a*) = (ftft,a«) 

where the subscript n of an is determined in the following way: Let 
aq be the uniquely determined element ajOtk in A ; then in (P) 

(1) If i = A = 2, or if i==A = 4, let w = 2 g - l , 
(2) If *«2, A = 4, or if i = 4, A»2, let n = 2q, 
(3) In all other cases, let n~q. 
It is easily verified that G is a loop with identity (ft, a{). The set H 

of elements (ft, a<), i = l, 2, 3, • • • , is a loop isomorphic with -4 
under the correspondence 

(ft, «*)<-> a*, i = 1, 2, 3, • • • . 

The definition of product in G implies that the correspondence 

(ft, ai) -> ft, i , i = 1,2, 3, •• • , 

is a homomorphism of G on ilf. The kernel of this homomorphism is 
H. 

By Corollary 2 of Theorem 1, M may be chosen to be commuta­
tive. If, furthermore, A is commutative, then G will have the same 
property. Commutativity, then, is not a sufficient condition that a 
quasigroup have only quasigroup images. 

It is to be noted that in the example M is neither finite nor associa­
tive, and i î i s not finite. We shall show that these are necessary prop­
erties of the example. 

In general, let the quasigroup G be homomorphic to the multiplica­
tive system G'. If the elements of G are a, 6, c, • • • , let a', 6', £ ' , • • • 
be their corresponding images in G'. We have immediately the fol­
lowing lemmas : 

LEMMA 1. If a' and 6' are any two elements of G', then x' and y' 
exist in G' such that a'x'=>b' and y'af~b'. 

LEMMA 2. The system Gf is a quasigroup if and only if a'b'~a'c' 
and b'a1 — c'a' each implies b'=>c'. 

THEOREM 2. If the homomorphic image G' of a quasigroup G is finite, 
then Gf is a quasigroup.* 

Let b{, 6/, • • • , bn be the elements of G', n a positive integer. 
Then by Lemma 1, for given i, 6/6/, 6/6/, • • • , 6/6n' are n distinct 
elements of G'. Right-hand cancellation is similarly established. 

THEOREM 3. If the homomorphic image Gf of a quasigroup G is 
associative, then G' is a quasigroup. 

* Cf. [5, Theorem 4.13]. 
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A multiplicative system which satisfies Lemma 1 and is associa­
tive is known to be a group (see [7, p. 19]). 

If S is a subset of G, let O [S] be the cardinal number of elements 
in S. Obviously 

(A) 0[S] = 0[aS] =*0[Sa] 

if a is any element of G. 
We define R(a) to be the set of elements g in G such that g' — a' in 

G'. Then 
R{a)b C R(ab), and 

aR(b) QR(ab); 

for if g — dib where d{ = a', then g'—d{bf—a'b'~{ab)\ and g lies in 
R(ab). The second statement follows in the same way. 

Let a and b be any elements of G. There exists x in G such that 
a = bx. By (B), R(p)xQR(px)=R(a), and thus 0[£(&)*] ^ 0 [ £ ( a ) ] . 
By (A), 0[R(b)]=0[R(b)x]. It follows that 0[R(b)]gO[R(a)]. But 
a and ô were any elements of G. We have proved the following lemma. 

LEMMA 3. If a and b are any elements of G, then 0 [R{a) ] = 0 [R(b) ].6 

LEMMA 4. /ƒ G' w the homomorphic image of the quasigroup G, then 
G' is a quasigroup if and only if R{ab) ~aR(b) ~R(a)b. 

Let R{ab)—aR(b)—R{a)b. If a'b' — a'c', then ac is an element of 
R(ab) =aR(b), and c lies in R(b), that is, c' = b'. By Lemma 2, G' is a 
quasigroup. 

Conversely, let G' be a quasigroup. Let g~xb be an element of 
R{ab). Then g' — x'b'~a'bf, and by Lemma 2, # ' = a'. Thus # lies in 
2?(a), and g lies in 12(a)6. It follows that R(a)b^R(ab). By (B), how­
ever, R(a)bQR(ab). Then R(a)b~R(ab), and by a similar argument 
aiî(&)=lî(aft). 

LEMMA 5. If 0[R(a)] is finite, G' is a quasigroup. 

By (B), R(ab)^aR(b). By Lemma 3 and (A), 0[R(ab)]=0[R(b)] 
— 0[aR(b)]. Since this order is finite, R(ab) =*aR{b). Similarly, 
R(ab) =R(a)b, and by Lemma 4, G' is a quasigroup. 

THEOREM 4. /ƒ G w a loop homomorphic to the multiplicative system 
G', and if the kernel of the homomorphism is finite, then G' is a loop. 

If e is the identity of G, then R(e) is the kernel of the homomor­
phism. The theorem follows by Lemma 5. 

8 Cf. [3, p. 770]. 
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MT. HOLYOKE COLLEGE 

A CONJECTURE OF KRISHNASWAMI 

D. H. LEHMER 

Let T(N) denote the number of right triangles whose perimeters 
do not exceed 2N, and whose sides are relatively prime integers. A 
list of all such triangles whose perimeters do not exceed 10000 has 
been given by A. A. Krishnaswami.1 On the basis of this table he con­
jectured that 

(1) T(N) ~ N/7. 

The asymptotic formula 

(2) T(N) ~ r~*N log 4 

follows from the general theory of "totient points," as developed by 
D. N. Lehmer in 1900. A statement equivalent to (2) will be found in 
his paper2 (p. 328). 

The conjecture (1) is not far wrong since 

7T2/log4 = 7.11941466. 

Presented to the Society, April 17, 1948; received by the editors January 29, 1948. 
1 A. A. Krishnaswami, On isoperimetrical Pythagorean triangles, Tôhoku Math. J. 

vol. 27 (1926) pp. 332-348. Two omissions in Table I may be noted: For 5 = 3450, 
a = 50, b = 19 ; for 5 «3465, a « 55, b = 8. This table is the basis for the one at the end of 
the present paper. 

2 D. N. Lehmer, Asymptotic evaluation of certain totient sums, Amer. J. Math. vol. 
22 (1900) pp. 293-335. 


