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Mrt. HoLYoKE COLLEGE

A CONJECTURE OF KRISHNASWAMI
D. H. LEHMER

Let T(V) denote the number of right triangles whose perimeters
do not exceed 2N, and whose sides are relatively prime integers. A
list of all such triangles whose perimeters do not exceed 10000 has
been given by A. A. Krishnaswami.! On the basis of this table he con-
jectured that

1 T(N) ~ N/1.
The asymptotic formula
(2) T(N) ~ =N log 4

follows from the general theory of “totient points,” as developed by
D. N. Lehmer in 1900. A statement equivalent to (2) will be found in
his paper? (p. 328).

The conjecture (1) is not far wrong since

n?/log 4 = 7.11941466.
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L A. A. Krishnaswami, On isoperimetrical Pythagorean triangles, T6hoku Math. J.
vol. 27 (1926) pp. 332-348. Two omissions in Table I may be noted: For s=23450,
a=350, b=19; for s=3465, e =55, b =8. This table is the basis for the one at the end of
the present paper.

2 D. N. Lehmer, Asymptotic evaluation of certain totient sums, Amer. J. Math. vol.
22 (1900) pp. 293-335.
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In this paper we give a short proof of the fact that
3) T(N) = 72N log 4 + O(N/2 log N).

The actual values of the error term for N=500(500)5000 are given
in a short table at the end of this paper. The proof of (3) is based on
the following lemmas.

LeEMMA 1. Let ¢(m) denote the number of positive integers not exceed-
ing m and prime to m. Then

4) d(x) = > ¢(m) = 3v~2%2 4 O(x log x).

mSz

A proof of this well known result will be found for example in Hardy
and Wright? (p. 266).

LEMMA 2. Let ®,(x) and $o(x) be defined by
B(x) = 2 om), Bo(x) = D o(m).

mS z,m even mS z,m odd
Then

%) &,(x) = 7222 4+ O(x log x),

6) bo(x) = 27~2x% 4 O(x log x).

Proor. Since (6) follows from (4) and (5) it suffices to prove (5).
To this effect we note that if m is even

m/2), m = 2 (mod 4),
M o(m) = {Z:Em;Z;, m=0 Emod 4;.
Hence
Po(x) = Bo(x/2) + 28s(2/2) = B(x/2) + Po(2/2).
Therefore

P
B(x) = 2. B(2™x) (¢ = [log /log 2]).
a1
Applying Lemma 1 we have

®,(x) = 31r“’xzzp: 4 4 O(x log %)

Aml

3 G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, Oxford,
1938, Lemma 1 appears to be due to Mertens, Journal fiir Mathematik vol. 77 (1871)
pp. 289-291.
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= 252 4 O(x'*‘f w4’“'dt) + O(= log x).
b 4

Since p>log x/log 4, the integral is O(1/x). Hence (5) follows.
LEMMA 3. Let 0<0<1, and define F(0, x), Fs0, x) and Fo(@, x) by
F (07 x) = Z m‘2¢(m), F(, x) = Z m..qu(m)!

fz<mS z 0z<mS z,m even

Fo(6,2) = 22 m(m).

0z<mS z,m odd

Then as x— o, with 0 fixed,

8) F@, x) = — 6x2log 6 + O(x! log x),
() Fq 6, x) = — 272 log 6 + O(«x~! log x),
(10) Fo(6, x) = — 472 log 6 + O(x7! log x).

Proor. Since (10) follows from (8) and (9) it suffices to prove (8)
and (9). Now

FO,0) = 25 m2m) = 3 {&m) — &m—1)}m>

fz<mS z 0z<mS z
= 2 em{m—(m+ 1)
fz<mSz

— &) [6x + 1] + &(x) [ + 1]-2

By Lemma 1 these last two terms cancel to some extent and together
contribute only O(x~! log x). As for the rest

2 Bm){m? — (m+ 1)}

fz<mS z
=312, (1 — (1 +m)2)4+0(2 m (1 — (1 4+ m1)~2) log m)
= 3722 2m~Y(1 + O(m~)) + O(> m=2 log m)

= 62 f +1dt + O(xY) + o( £ log tdt)
]

z 0z
= — 6 2log 6 + O(x! log x),
which gives (8). To prove (9) we note from (7) that

Fy0, x) = Fo(0, x/2)/4 + Fo(0, x/2)/2 = F(0, x/2)/4 + F.0, /2)/4.

Hence

Fu0, ) = 2R, &/2)4  (p = [log #/log 2]).
A=1
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Using (8) we find

F,6, x) = — 67~2log 6y 4 + O(f 4“dt> 4+ O(x! log ).

A=1 P

Since the integral is O(x~1), (9) follows at once. This completes the
proof of Lemma 3.

LEMMA 4. Let ¢(x, m) denote the number of integers Sx and prime to
m. Then

| ¢(x, m) — am~p(m) | < d(m)

where d(m) is the number of divisors of m.

This follows easily from a familiar theorem of Legendre to the
effect that

(11) o(x, m) = 2 [x571]u(3)

8m
where u is the Mobius function and the sum extends over all the di-
visors of m. In fact if we write
[#6-1] = @6~ — ¢(x, 8)
so that
0= e(x,0) <1,
then (11) becomes
d(x, m) = 27 57() — 2 e, S)u(?).

The first sum is m~'¢(m) and the second is less than

21 =d(m)

8|m

in absolute value. This proves the lemma.
Finally we need one more lemma.

LEMMA. 5.
> d(m) = O(x log x).

mSz
This is a very weak corollary of a famous result of Dirichlet (see
Hardy and Wright,? p. 262-263).
We are now in a position to prove the following theorem.

THEOREM. Let T(N) denote the number of integral right triangles
whose perimeters do not exceed 2N and whose sides are relatively prime,
then
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T(N) = 7N log 4 + O(N'/2 log N).

Proor. It is well known that all integral right triangles (a, b, ¢)

are given by the parametric equations
a = m? — n? b = 2mn, ¢ =m?+4 n?

where m, n are integers with
(12) n < m.
Since the perimeter is supposed not to exceed 2N we have
(13) mn + m? < N.
In order to avoid the cases in which e, b, ¢ have a common factor it
is necessary to suppose that we choose m, n so that

(14) m, n are coprime and not both odd.

T(N) is then merely the number of pairs of positive integers (m, n)
such that (12), (13) and (14) hold. In case m < (N/2)V2, (13) is a
consequence of (12). In case (N/2)YV2<m < NV2 (12) is a conse-
quence of (13). Hence if we define

1 if ms< (/)1

(15) ¥(m) = {m‘2N -1 if (N/2)'*<m = N2

then the number of integers # that go with a given m is the number of
integers prime to m not exceeding my(m) or my(m)/2 according as
m is even or odd. Hence if we set x = N1/2

T(N) = 25 émp(m),m)+ 3 ¢(""”m) ) m)

m= z,m even mE z,m odd
By Lemma 4,
T(N) = 25 ¢meé(m) +21 35 Y(m)p(m) + R(N)
(16) mS z,m even msS z,m odd
= 2a+ 273, 4+ R(V)
where

| R(N)| = - d(m) = O(x log ) = O(N'/2 log N).

mSz
By (15) with 6 =212 we can write
201 = ®.(02) + NE(9, x) — @.(x) + 2.(6%),
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Yo = ®o(0x) + NFo(8, ) — ®o(x) + Po(62),
so that
Do 271 30 = (0x) + u(0%) — 271 { 8(x) + ()}
+ 27IN{F (9, %) + F.(8, x)}.

By Lemmas 1, 2, and 3 therefore we obtain after simplification
T(N) = 7 %2 log 2)x* + O(x log x) = n~2(log 4)N + O(N'/? log N).
The following small table illustrates the error in (3):

E(N) = T(N) — 7N log 4.

The function C(V) is defined by

C(N)N'2log N = 10%® E(N)

and gives some idea of the possible constant implied by the O term
of (3).

N T(N) AT «—=Nlog4 E(N) (V)

500 70 70 70.23049  —0.23049  —1.6596
1000 140 71 140.46099  —0.46099  —2.1103
1500 211 69  210.69148  +0.30852  +1.0893
2000 280 69  280.92197  —0.92197  —2.7123
2500 349 73 351.15246  —2.15246  —5.5022
3000 422 70  421.38296  —0.61704  —1.4071
3500 492 68  491.61345  +0.38655  +0.8007
4000 560 71  561.84394  —1.84394  —3.5152
4500 631 72 632.07444  —1.07444  —1.9041
5000 703 702.30493  40.69507  +1.1541
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