COVERINGS AND BETTI NUMBERS

BENO ECKMANN

1. Introduction. Let the finite polyhedron P be a regular covering of the polyhedron \bar{P}, and let G be the corresponding (finite) group of covering transformations of P. Then G acts as operator group on the homology groups H_{n} of P. If we consider homology with real coefficients, H_{n} is a real vector group of finite rank $p_{n}=n$th Betti number of P, and G operates in H_{n} as a group of linear transformations; we denote by $s_{n}(x), x \in G$, the character of this linear representation of G of degree p_{n}. Let g be the order of G.

In this note we shall prove:
Theorem 1. The nth Betti number \bar{p}_{n} of \bar{P} is given by

$$
\bar{p}_{n}=\frac{1}{g} \sum_{x \in G} s_{n}(x) .
$$

In the Princeton Bicentennial Conference W. Hurewicz raised the question whether the homology groups of a polyhedron \bar{P} are determined by those of a regular covering P given as groups with operators. According to Theorem 1 the answer is affirmative in the case of finite polyhedra P, \bar{P} and real (or rational) coefficients. We shall show elsewhere-in a general theory of complexes with auto-morphisms-that the same is true for arbitrary (finite or infinite) polyhedra, provided that the group G is finite. Since the proof in our present case, based upon "harmonic chains," is very simple and yields the explicit formula of Theorem 1, which has interesting applications, we give it here independently of other more general considerations.
2. Simplicial covering and harmonic chains. To compute the homology groups of P and \bar{P}, let K and \bar{K} be finite simplicial complexes which are subdivisions of P and \bar{P} respectively, such that each oriented simplex of K covers one oriented simplex of \bar{K}. Then G acts as an automorphism group ${ }^{1}$ on K; the automorphisms $x \in G$ are permutations of the oriented simplices σ_{n} of K in each dimension n and preserve all incidence relations. The set of all simplices σ_{n} covering a simplex $\bar{\sigma}_{n}$ of \bar{K} is a transitivity domain of G; that is, it contains with any simplex σ_{n}^{\prime} all $x \sigma_{n}^{\prime}, x \in G$, and only those. Furthermore, since in an automorphism $x \neq e$ no simplex is fixed,

[^0]$x \sigma_{n}^{\prime}=x_{1} \sigma_{n}^{\prime}$ implies $x=x_{1}$. The simplicial map which projects each σ_{n} of K onto the $\bar{\sigma}_{n}$ it covers is denoted by U; obviously, $U x \sigma_{n}=U \sigma_{n}$ for all $x \in G$.

In the simplicial complexes K and \bar{K} we shall only use chains with real coefficients, and no distinction will be made between chains and cochains. An n-chain a_{n} in K is a linear form $a_{n}=\sum_{i} \alpha_{i} \sigma_{n i}$ with real coefficients, α_{i}, where the n-simplices $\sigma_{n i}$ of K play the role of indeterminates. All n-chains a_{n} in K form a vector space C_{n} (a real linear space) of finite rank, in which the scalar product of $a_{n}=\sum_{i} \alpha_{i} \sigma_{n i}$ and $b_{n}=\sum_{i} \beta_{i} \sigma_{n i}$ is defined by $a_{n} \cdot b_{n}=\sum_{i} \alpha_{i} \beta_{i}$. The boundary operator ∂ is a linear mapping of C_{n} into $C_{n-1}, n=0,1, \cdots\left(C_{-1}=0\right)$; the coboundary operator δ is the linear mapping of C_{n-1} into C_{n} which is dual to ∂, that is, δ is defined by $\delta a_{n-1} \cdot b_{n}=a_{n-1} \cdot \partial b_{n}$ for all ($n-1$) chains a_{n-1} and n-chains b_{n}. If $\partial a_{n}=\delta a_{n}=0, a_{n}$ is called a harmonic chain; as in each homology or cohomology class there is exactly one harmonic chain, ${ }^{2}$ the vector group H_{n} of all harmonic n-chains (a linear subgroup of C_{n}) is isomorphic both to the nth homology and the nth cohomology group of K (the isomorphism is given by representing a homology or cohomology class by the harmonic chain it contains). The rank of H_{n} is the nth Betti number p_{n} of K. All chains, groups, and so on, of \bar{K} will be denoted by the same symbols as in K, with a bar (for example, $\bar{a}_{n}, \bar{C}_{n}, \bar{H}_{n}$), the boundary and coboundary operator as in K by ∂ and δ.

The linear mappings of the chain groups and the homology groups induced by the simplicial maps U and $x \in G$ will also be denoted by U and x respectively. x is an isomorphism of C_{n} onto itself, U a homomorphism of C_{n} onto \bar{C}_{n}, for all n.

The simplicial map U of K onto \bar{K} is locally one-one; that is, if the simplices σ_{n} and σ_{n}^{\prime} of K are both incident with a simplex σ_{k}, then $U \sigma_{n}=U \sigma_{n}^{\prime}$ implies $\sigma_{n}=\sigma_{n}^{\prime}$. For each simplex σ_{n} of K one has therefore not only $U \partial \sigma_{n}=\partial U \sigma_{n}$, but also

$$
\begin{equation*}
U \delta \sigma_{n}=\delta U \sigma_{n} \tag{1}
\end{equation*}
$$

in other words, the linear mapping U of C_{n} onto \bar{C}_{n} commutes with ∂ and δ. Let U^{*} be the dual mapping of \bar{C}_{n} into C_{n}, defined by $U^{*} \bar{a}_{n} \cdot b_{n}$ $=\bar{a}_{n} \cdot U b_{n}$ for all n-chains $\bar{a}_{n} \in \bar{C}_{n}$ and $b_{n} \in C_{n}$; it also commutes with ∂ and δ. Hence
(2) U and U^{*} both map harmonic chains onto harmonic chains.

Since U is a mapping of C_{n} onto \bar{C}_{n}, the dual mapping U^{*} is an isomorphism of \bar{C}_{n} into C_{n}. For, $U^{*} \bar{a}_{n}=0$ implies $U^{*} \bar{a}_{n} \cdot b_{n}=\bar{a}_{n} \cdot U b_{n}=0$

[^1]for all $b_{n} \in C_{n}$, hence $\bar{a}_{n} \cdot \bar{b}_{n}=0$ for all $\bar{b}_{n} \in \bar{C}_{n}$, hence $\bar{a}_{n}=0$. This together with (2) yields

Theorem 2. U^{*} induces an isomorphism of \bar{H}_{n} into $H_{n}, n=0,1, \cdots$
Corollary 1. The nth Betti number p_{n} of \bar{K} is not greater than the nth Betti number p_{n} of K.

We remark further that U maps $U^{*} \bar{C}_{n} \subset C_{n}$ isomorphically onto \bar{C}_{n}. For, $U U^{*} \bar{a}_{n}=0$ implies $U U^{*} \bar{a}_{n} \cdot \bar{a}_{n}=U^{*} \bar{a}_{n} \cdot U^{*} \bar{a}_{n}=0$, hence $U^{*} \bar{a}_{n}$ $=0$. In particular U maps $U^{*} \bar{H}_{n} \subset H_{n}$ isomorphically into \bar{H}_{n}, and since $U^{*} \bar{H}_{n}$ is isomorphic to \bar{H}_{n}, this must be a map onto \bar{H}_{n}. Hence
(3) U maps H_{n} onto \bar{H}_{n}.

Remark. $U U^{*}$ is not the identity mapping of \bar{C}_{n} or \bar{H}_{n} but, as is easily seen, multiplies each chain \bar{a}_{n} by the order g of G.
3. Invariant chains. In the linear mapping of C_{n} onto itself induced by an automorphism $x \in G$ the scalar product of two n-chains a_{n}, b_{n} remains unchanged:

$$
\begin{equation*}
x a_{n} \cdot x b_{n}=a_{n} \cdot b_{n} \tag{4}
\end{equation*}
$$

This follows simply from the fact that x is a permutation of the oriented simplices (that is, of the basis vectors of C_{n}). In other words, x is an orthogonal transformation of C_{n}.

A chain $a_{n} \in C_{n}$ will be called invariant if $x a_{n}=a_{n}$ for all $x \in G$. This is the case if and only if

$$
\begin{equation*}
a_{n} \cdot b_{n}=a_{n} \cdot x b_{n} \tag{5}
\end{equation*}
$$

for all $x \in G$ and $b_{n} \in C_{n}$. For, if a_{n} is invariant, $a_{n} \cdot b_{n}=x a_{n} \cdot x b_{n}$ $=a_{n} \cdot x b_{n}$; and conversely, if (5) holds for all $x \in G$, then $a_{n} \cdot b_{n}=a_{n}$ $\cdot x^{-1} b_{n}=x a_{n} \cdot b_{n}$ for all $b_{n} \in C_{n}$, hence $a_{n}=x a_{n}$. The invariant chains constitute a linear subgroup C_{n}^{i} of C_{n}.
(6) The isomorphism U^{*} maps \bar{C}_{n} onto C_{n}^{t}.

Proof. For any $\bar{a}_{n} \in \bar{C}_{n}, U^{*} \bar{a}_{n}$ is invariant; for

$$
U^{*} \bar{a}_{n} \cdot x b_{n}=\bar{a}_{n} \cdot U x b_{n}=\bar{a}_{n} \cdot U b_{n}=U^{*} \bar{a}_{n} \cdot b_{n}
$$

for all $b_{n} \in C_{n}$. Conversely, if a_{n} is invariant, the relation

$$
\bar{a}_{n} \cdot U \sigma_{n}=a_{n} \cdot \sigma_{n} \quad \text { for all } \sigma_{n} \text { of } K
$$

defines an n-chain \bar{a}_{n} of \bar{K} without ambiguity (for replacing σ_{n} by $\sigma_{n}{ }^{\prime}=x \sigma_{n}$ does not change either side of this equation). Then $U^{*} \bar{a}_{n} \cdot \sigma_{n}$ $=\bar{a}_{n} \cdot U \sigma_{n}=a_{n} \cdot \sigma_{n}$ for all σ_{n}, hence $U^{*} \bar{a}_{n}=a_{n}$.

The invariant harmonic n-chains of K form a linear subgroup H_{n}^{d} of H_{n}. For any $a_{n} \in H_{n}^{i}$ there is, by (6), an \bar{a}_{n} such that $a_{n}=U^{*} \bar{a}_{n}$;
since U^{*} commutes with ∂ and δ and is an isomorphism, it follows that \bar{a}_{n} is harmonic. Combining this with Theorem 2 and (6) we obtain the following result.

Theorem 3. U^{*} induces an isomorphism of \bar{H}_{n} onto H_{n}^{1}.
4. Proof of Theorem 1. Since the automorphisms $x \in G$ of K permute the n-simplices, for each n, and preserve the incidence relations, the linear mappings x of C_{n} onto itself, $n=0,1, \cdots$, commute with both ∂ and δ. Hence they induce linear mappings of H_{n} onto itself; these mappings describe the operation of G on the n-dimensional homology and cohomology groups of K. By (4) these linear mappings of H_{n} onto itself are orthogonal. Hence for each n one has an orthogonal representation R_{n} of the group G in the vector group H_{n}. The subspace H_{n}^{i} of H_{n} consists of those elements of H_{n} which are fixed under this representation; by Theorem 3 it may be considered as the homology or cohomology group \bar{H}_{n} of \bar{K}. This proves that the latter is determined by H_{n} and by the operation of G in H_{n} (cf. §1).

The rank of H_{n}^{t}, which is the nth Betti number \bar{p}_{n} of \bar{K}, is equal to the number of trivial irreducible representations of G contained in the representation R_{n} of G in H_{n}, hence by a well known character relation ${ }^{3}$ is equal to the average over the group G of the character $s_{n}(x)$ of the representation R_{n}. This proves Theorem 1. Replacing $s_{n}(e)$ by the degree p_{n} of the representation, where e is the unit element of G, we may write the formula in the form

$$
\begin{equation*}
g \cdot \bar{p}_{n}=p_{n}+\sum_{x \in G, x \neq e} s_{n}(x) \tag{7}
\end{equation*}
$$

Remark. $p_{n}=\phi_{n}$ holds if and only if $H_{n}=H_{n}^{d}$, hence if all harmonic n-chains of K are invariant under the operations of G; in other words, if each n-dimensional homology class is mapped into itself by all $x \in G$. This result may be stated in the following way:

Theorem 4. The nth Betti numbers p_{n} and \bar{p}_{n} of K and \bar{K} are equal if and only if in the dimension n all automorphisms $x \in G$ are of the homology type of the identity (for real coefficients). ${ }^{4}$
5. Products, ${ }^{5}$ manifolds. The Alexander \cup-product associates with two cohomology classes of K of dimensions n and k a third one of di-

[^2]mension $n+k$, hence with two harmonic chains a_{n} and b_{k} a unique harmonic ($n+k$)-chain $a_{n} \cup b_{k}$. The Čech-Whitney \cap-product associates with a cohomology class of dimension k and a homology class of dimension $k+p(p \geqq 0)$ a homology class of dimension p, hence with two harmonic chains b_{k} and c_{k+p} a unique harmonic p-chain $b_{k} \cap c_{k+p}$. From the fact that all incidence relations are preserved by the automorphisms $x \in G$ it may easily be deduced that
\[

$$
\begin{align*}
x a_{n} \cup x b_{k} & =x\left(a_{n} \cup b_{k}\right), \tag{8}\\
x b_{k} \cap x c_{k+p} & =x\left(b_{k} \cap c_{k+p}\right) \tag{9}
\end{align*}
$$
\]

for all harmonic chains a_{n}, b_{k}, c_{k+p} and all $x \in G$.
It follows that the \cup - or \cap-product of invariant harmonic chains is again an invariant harmonic chain. The direct sum of all H_{n}^{d}, $n=0,1, \cdots$, together with the $\cup_{\text {-product, constitutes a subring } R^{i}}$ of the Alexander ring (the cohomology ring) R of K. Since U^{*} preserves the \cup-product, it follows from Theorem 3:
(10) U^{*} induces a ring-isomorphism of the cohomology ring \bar{R} of \bar{K} onto R^{i}.

We now assume K to be a (closed) orientable N-dimensional manifold. Let m_{N} be the fundamental harmonic N-chain corresponding to an orientation of K; that is, m_{N} is a chain with coefficients ± 1 generating H_{N}. The duality operator D in K may be defined by

$$
\begin{equation*}
D a_{n}=a_{n} \cap m_{N} \tag{11}
\end{equation*}
$$

for harmonic chains a_{n}; if a_{n} is considered as a representative of an n-dimensional cohomology class, $D a_{n}$ is the harmonic representative of the dual $(N-n)$-dimensional homology class. As is well known, D is an isomorphism of H_{n} onto H_{N-n}.
(12) For any $x \in G$ one has $x D a_{n}=\gamma \cdot D x a_{n}$, where $\gamma= \pm 1$ is the (topological) degree of x.

Proof. $x D a_{n}=x\left(a_{n} \cap m_{N}\right)=x a_{n} \cap x m_{N}=x a_{n} \cap \gamma m_{N}=\gamma \cdot\left(x a_{n} \cap m_{N}\right)$ $=\gamma \cdot D x a_{n}$.
As a consequence we have:
Theorem 5. If K is an orientable N-dimensional manifold, then the characters $s_{n}(x)$ and $s_{N-n}(x)$ of the representations of G in H_{n} and H_{N-n} are related by

$$
s_{n}(x)=\gamma \cdot s_{N-n}(x)
$$

where γ is the degree of $x \in G$.
6. An application. Let \bar{K} be a non-orientable N-dimensional manifold, and K an orientable two-sheeted covering of K. The cover-
ing transformation group consists of the unit element e and an element y of degree -1 . Various relations between the Betti numbers of \bar{K} and K may be deduced from (7) and (12). (7) becomes in this case (we write s_{n} for $s_{n}(y)$)

$$
\begin{equation*}
2 p_{n}=p_{n}+s_{n}, \quad n=0,1, \cdots, N \tag{13}
\end{equation*}
$$

Since y has degree -1 , one has, by (12), $s_{n}=-s_{N-n}$, hence $2 p_{N-n}$ $=p_{N-n}+s_{N-n}=p_{n}-s_{n}=2 p_{n}-2 s_{n}$, hence

$$
\begin{align*}
& \bar{p}_{n}-\bar{p}_{N-n}=s_{n} \tag{14}\\
& \bar{p}_{n}+\bar{p}_{N-n}=p_{n} . \tag{15}
\end{align*}
$$

This is a duality theorem for non-orientable N-dimensional manifolds. We shall use (13)-(15) to prove the following theorem.

Theorem 6. The following relations hold between the Betti numbers \bar{p}_{n} of a closed non-orientable N-dimensional manifold \bar{K} and the Betti numbers p_{n} of a two-sheeted orientable covering K of \bar{K} :

$$
\begin{align*}
& \text { for } N=3, \quad p_{1}=2 p_{1}-1 ; 6 \tag{16}\\
& \text { for } N=2 L, \quad p_{L}=2 p_{L} ; \\
& \text { for } N=2 L+1, \sum_{n=0}^{L}(-1)^{n} p_{n}=2 \sum_{n=0}^{L}(-1)^{n} \bar{p}_{n} \quad \text { and } \\
& \qquad \sum_{n \text { even }} p_{n}=2 \sum_{n \text { even }} p_{n} .
\end{align*}
$$

Proof. (a) If $N=3$, the Euler characteristic $p_{0}-p_{1}+p_{2}-p_{3}=0$, where $p_{0}=1, p_{3}=0$, hence $p_{2}=p_{1}-1$; by (15), $p_{1}+p_{2}=2 p_{1}-1=p_{1}$. (b) (17) follows immediately from (15). (c) If $N=2 L+1$, the characteristics of K and \bar{K} are 0 and we deduce from (13)

$$
\begin{equation*}
\sum_{n=0}^{N}(-1)^{n} s_{n}=0 \tag{19}
\end{equation*}
$$

hence $\sum_{n=0}^{L}(-1)^{n} s_{n}=-\sum_{n=L+1}^{N}(-1)^{n} s_{n}$; since $s_{n}=-s_{N-n}$, this is equal to $-\sum_{n=L+1}^{N}(-1)^{N-n} S_{N-n}=-\sum_{n=0}^{L}(-1)^{n} s_{n}$, hence $\sum_{n=0}^{L}(-1)^{n} s_{n}=0$. Using $s_{n}=-s_{N-n}$ again, we may also write this as $\sum_{n \text { even }} s_{n}=0$. These two results together with (13) yield (18). We remark that since the characteristics of K and \bar{K} are $0(N=2 L+1)$ the first of the formulas (18) is equivalent to $\sum_{n=L+1}^{N}(-1) p_{n}$ $=2 \sum_{n=L+1}^{N}(-1) \bar{p}_{n}$, the second one to $\sum_{n \text { odd }} p_{n}=2 \sum_{n \text { odd }} \bar{p}_{n}$.

[^3]Remark. The formula (19), which here was proved directly, may also be deduced from a well known result concerning the number of fixed simplices in a simplicial self-mapping. ${ }^{7}$ In the general case of an arbitrary automorphism group G and arbitrary finite complexes K and \bar{K} it follows from this result that the "Lefschetz number" $\lambda(x)=\sum_{n=0}^{N}(-1)^{n} S_{n}(x)$ is 0 for any automorphism $x \neq e$.

References

1. B. Eckmann, Der Cohomologiering einer beliebigen Gruppe, Comm. Math. Helv. vol. 18 (1945-1946) pp. 232-282.
2. -, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comm. Math. Helv. vol. 17 (1945) pp. 240-255.
3. B. L. van der Waerden, Moderne Algebra, vol. 2, Berlin, 1931.
4. G. Hirsch, Sur les groupes d'homologie de certains complexes de recouvrement, Portugaliae Math. vol. 4 (1945) pp. 225-237.
5. H. Whitney, On products in a complex, Ann. of Math. vol. 39 (1938) pp. 397432.
6. T. H. Kiang, An application of the addition formulas of Mayer-Vietoris, Academia Sinica Science Record vol. 7 (1945) pp. 275-276.
7. P. Alexandroff and H. Hopf, Topologie, Berlin, 1935.

Institute for Advanced Study and University of Lausanne

[^4]
[^0]: Presented to the Society, April 17, 1948; received by the editors February 25, 1948.
 ${ }^{1}$ For details see for example [1, §6]. Numbers in brackets refer to the references at the end of the paper.

[^1]: ${ }^{2}$ See for example [2, pp. 245-246]. Other references are given in [2].

[^2]: ${ }^{3}$ Cf. [3, p. 201, formula (16)].
 ${ }^{4}$ The sufficiency of the condition has previously been proved by G. Hirsch, with an application to closed Lie groups; see [4, p. 226].
 ${ }^{5}$ For definitions and properties see [5]; for products in a covering complex the remarks of $[1, \S 6]$ have to be used.

[^3]: ${ }^{6}$ For 3-dimensional manifolds \bar{K} satisfying certain restrictive conditions (16) is proved in a note by T. H. Kiang [6].

[^4]: ${ }^{7}$ Cf. [7, p. 530].

