6. M. Riesz, Sur la sommation des serries de Dirichlet, C. R. Acad. Sci. Paris vol. 149 (1909) pp. 18-21.
7. ——, Sur l'équivalence de certaines méthodes de sommation, Proc. London Math. Soc. (2) vol. 22 (1923-1924) pp. 412-419.
8. L. L. Silverman, On the definition of the sum of a divergent series, University of Missouri Studies, Mathematical Series, vol. 1, no. 1, 1913.
9. O. Toeplitz, Über allgemeine lineare Mittelbildungen, Prace Matematycznofizyczne vol. 22 (1911) pp. 113-119.

The University of Rochester

ON THE REPRESENTATION OF A FUNCTION AS A HELLINGER INTEGRAL

RICHARD H. STARK

We derive in this note a necessary and sufficient condition that a nondecreasing, continuous function h of a single variable x be representable as a Hellinger integral of the form $\int_{0}^{x}(d f)^{2} / d g$. This condition was first proved by Hellinger in his dissertation [1]. ${ }^{1}$ Other proofs have been given by Hahn [2] and Hobson [3], who transform to Lebesgue integrals and make use of Lebesgue theory. Hellinger's proof and the less complicated proof given here have a certain simplicity in that they avoid reliance on these notions and even remain entirely within the range of monotone functions.

We consider nondecreasing functions of a real variable x on the interval $0 \leqq x \leqq 1$ (henceforth denoted as $[0,1]$). For such a function $f(x)$ and a closed interval Δ with end points x_{1} and $x_{2}\left(x_{1} \leqq x_{2}\right)$, we define a new function $f_{\Delta}(x)$ to denote the length of the interval on the f-axis determined by the interval on the x-axis common to Δ and ($0, x$). More precisely, denoting

$$
\begin{array}{ll}
f(x \pm 0)=\lim _{h \rightarrow 0} f(x \pm|h|) & \text { if } 0<x<1 \\
f(0-0)=f(0) ; \quad f(1+0)=f(1) &
\end{array}
$$

we define

$$
f_{\Delta}(x)= \begin{cases}0 & \text { if } 0 \leqq x<x_{1} \tag{1}\\ f(x+0)-f\left(x_{1}-0\right) & \text { if } x_{1} \leqq x \leqq x_{2} \\ f\left(x_{2}+0\right) & \text { if } x_{2}<x \leqq 1\end{cases}
$$

Received by the editors January 30, 1948.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

The interval $\left[f\left(x_{1}-0\right), f\left(x_{2}+0\right)\right]$ on the f-axis will be denoted as $f(\Delta)$. We retain the notation Δf for the proper difference $f\left(x_{2}\right)-f\left(x_{1}\right)$.

Given sets $\left\{E_{i}\right\} \subset[0,1]$ for which the symbols $f_{E_{i}}(x)$ and $f\left(E_{i}\right)$ have been defined, we define

$$
\left.\begin{array}{rl}
f \sum E_{i}(x) & =\sum f_{E_{i}}(x) \tag{2}\\
f\left(\sum E_{i}\right) & =\sum f\left(E_{i}\right) \\
f_{E_{2}-E_{1}}(x) & =f_{E_{2}}(x)-f_{E_{1}}(x) \\
f\left(E_{2}-E_{1}\right) & =f\left(E_{2}\right)-f\left(E_{1}\right)
\end{array}\right\} \quad \text { if } E_{i} \cdot E_{i} \subset E_{2} .
$$

The sets which we shall consider will be constructed from sets of intervals in a manner such that (1) and (2) will assign to each such set E a function $f_{E}(x)$ called the measure function of E on the f-axis and a set $f(E)$ of points on the f-axis. Our $f_{E}(1)$ is just the measure with respect to $f(x)$ of the set E as defined in [4; p. 277]. It is immediate that if $f_{E_{D}}(x)$ denotes the measure on the $f_{E}(x)$ axis of the set D on the x-axis, then

$$
\begin{equation*}
f_{E_{D}}(x)=f_{E \cdot D}(x) . \tag{3}
\end{equation*}
$$

We now consider functions $f(x), g(x)$, and $h(x)$ which are nondecreasing and continuous in $[0,1]$ and satisfy the inequality

$$
\begin{equation*}
(\Delta f)^{2} \leqq \Delta g \Delta h \quad \text { on every subinterval } \Delta \text { of }[0,1] \tag{4}
\end{equation*}
$$

Let M be an arbitrary set on the x-axis. For arbitrary $\epsilon>0$, the set $g(M)$ on the g-axis may be enclosed in a set I_{e} of countably many mutually disjoint intervals d_{i} such that the measures on the g-axis of the sets $g(M)$ and I_{ϵ} differ by less than ϵ; that is, the inverse function $x(g)$ defines a corresponding set $x\left(I_{\mathbf{t}}\right)$ of the x-axis which we denote for brevity as $X_{\text {c }}$ such that

$$
\begin{equation*}
0 \leqq g_{X_{\epsilon}}(1)-g_{M}(1) \leqq \epsilon . \tag{5}
\end{equation*}
$$

Now for Δ an arbitrary interval of the x-axis and Δ_{i} the intersection of Δ with $x\left(d_{i}\right)$, we have:

$$
\begin{equation*}
\Delta f_{M} \leqq \Delta f_{X_{e}}=\sum_{i=1}^{\infty} \Delta_{i} f . \tag{6}
\end{equation*}
$$

But $\left(\Delta_{i} f\right)^{2} \leqq \Delta_{i} g \Delta_{i} h$ on every Δ_{i} so that from the Cauchy-Schwarz inequality:

$$
\begin{equation*}
\left(\sum_{i=1}^{\infty} \Delta_{i} f\right)^{2} \leqq \sum_{i=1}^{\infty} \Delta_{i} g \sum_{i=1}^{\infty} \Delta_{i} h \leqq \Delta g_{x_{\epsilon}} \Delta h . \tag{7}
\end{equation*}
$$

With use of (5) and (6), this gives

$$
\begin{equation*}
\left(\Delta f_{M}\right)^{2} \leqq \Delta g_{M} \Delta h \tag{8}
\end{equation*}
$$

Replacing (4) by (8) and carrying out an analogous argument for a set N and the h-axis, we have

$$
\begin{equation*}
\left(\Delta f_{M \cdot N}\right)^{2} \leqq \Delta g_{M} \Delta h_{N} \quad \text { if (4) holds. } \tag{9}
\end{equation*}
$$

Theorem. To a given pair of nondecreasing, continuous functions $g(x)$ and $h(x)$ for which $g(0)=0=h(0)$ there corresponds an $f(x)$ such that

$$
h(x)=\int_{0}^{x} \frac{(d f)^{2}}{d g}
$$

if and only if for every set E of the x-axis such that $g_{E}(1)=g(1)$, we have $h_{E}(1)=h(1)$.

For the proof, we use the following elementary properties of Hellinger integrals [1] which hold for arbitrary functions $g(x)$ and $h(x)$ that are nondecreasing and continuous in $[0,1]$:
a. Existenceof $t(x)=\int_{0}^{x}(d u)^{2} / d g$ implies $t(x)=\int_{0}^{x}\left(d \int_{0}^{x}(d g d t)^{1 / 2}\right)^{2} / d g$. (10) b. $f(x)=\int_{0}^{x}(d g d h)^{1 / 2}$ exists and $(\Delta f)^{2} \leqq \Delta g \Delta h$.
c. The inequality $(\Delta f)^{2} \leqq \Delta g \Delta h$ implies that $s(x)=\int_{0}^{x}(d f)^{2} / d g$ exists and $(\Delta f)^{2} / \Delta g \leqq \Delta s \leqq \Delta h$ if $\Delta g \neq 0$.

It follows from (10a) that the desired representation of $h(x)$ exists only if it is given by $\int_{0}^{x}(d f)^{2} / d g$ where $f(x)=\int_{0}^{x}(d g d h)^{1 / 2}$. By (10b), $(\Delta f)^{2} \leqq \Delta g \Delta h$. Let E be any set such that $g_{E}(1)=g(1)$. Then from (8), we have on replacing M by the complement \bar{E} of E with respect to $[0,1]$ and taking for Δ the interval $[0,1]$ that

$$
\begin{equation*}
\left(f_{\bar{E}}(1)\right)^{2} \leqq g_{\bar{E}}(1) h(1)=0 \tag{11}
\end{equation*}
$$

and consequently $f_{E}(1)=f(1)$. It follows from application of (11) to (9) that

$$
\begin{equation*}
(\Delta f)^{2} \leqq \Delta g \Delta h_{E} \tag{12}
\end{equation*}
$$

Property (10c) with (12) gives that $\Delta s \leqq \Delta h_{E}$ so that the function $a(x)=h_{E}(x)-s(x)$ is nondecreasing and if $\Delta g \neq 0$

$$
\begin{aligned}
0 \leqq \Delta a & =\Delta h_{E}-\Delta s \leqq \Delta h-(\Delta f)^{2} / \Delta g \\
& =\left((\Delta g \Delta h)^{1 / 2}-\Delta f\right)\left((\Delta h / \Delta g)^{1 / 2}+\Delta f / \Delta g\right)
\end{aligned}
$$

Consequently

$$
\begin{align*}
& 0 \leqq \Delta a=\Delta h_{E}-\Delta s \leqq 2(\Delta h / \Delta g)^{1 / 2}\left((\Delta g \Delta h)^{1 / 2}-\Delta f\right) \tag{13}\\
& \text { if } g_{E}(1)=g(1) \text { and } \Delta g \neq 0 .
\end{align*}
$$

We next choose a sequence of divisions D_{n} of the interval $(0,1)$ into finitely many nonoverlapping intervals (that is, no two intervals of D_{n} have more than an end point in common) such that each D_{n} is formed from D_{n-1} by addition of finitely many division points and

$$
\begin{equation*}
\sum_{D_{n}}\left((\Delta g \Delta h)^{1 / 2}-\Delta f\right) \leqq 4^{-n} \tag{14}
\end{equation*}
$$

That such a choice is possible is implied by (10a).
For each division D_{n}, we distinguish two types of intervals:
a. The set G_{n} of intervals such that $\Delta g \geqq 4^{-n} \Delta h$;
b. The set S_{n} of intervals such that $\Delta g<4^{-n} \Delta h$.

Then from (13), (14), (15), we have

$$
\begin{align*}
a_{G_{n}}(1) & =\sum_{G_{n}} \Delta a \leqq 2^{-n+1} \tag{16}\\
g_{S_{n}}(1) & =\sum_{S_{n}} \Delta g \leqq 4^{-n} h(1) \tag{17}
\end{align*}
$$

We define $R_{n}=\coprod_{m=n}^{\infty} G_{m}$ and $R=\lim _{n \rightarrow \infty} R_{n}$. It is immediate that

$$
\begin{equation*}
a_{R}(1)=\lim _{n \rightarrow \infty} a_{R_{n}}(1) \leqq \lim _{n \rightarrow \infty} a_{G_{n}}(1)=0 \quad \text { (see (16)) } \tag{18}
\end{equation*}
$$

and since $\bar{R} \subset \sum_{m=n}^{\infty} S_{m}$,

$$
\left.g_{\bar{R}}(1) \leqq \lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} g_{S_{m}}(1)=0 \quad \text { see }(17)\right)
$$

Thus R is a set of the type E assumed in (13). Consequently, $0 \leqq \Delta a$ $\leqq \Delta h_{R}$, and it follows from (9) and (3) that $a_{\bar{R}}(1) \leqq h_{R \cdot \bar{R}}(1)=0$. Hence

$$
\begin{equation*}
a_{\bar{R}}(1)=0 . \tag{19}
\end{equation*}
$$

The function $a(x)$ is nondecreasing with $a(0)=0$ and by (18) and (19) has $a(1)=0$. Thus $a(x) \equiv 0$, that is,

$$
\begin{equation*}
s(x)=h_{R}(x) \tag{20}
\end{equation*}
$$

Therefore,

$$
s(x)=\int_{0}^{x} \frac{\left(d \int_{0}^{x}(d g d h)^{1 / 2}\right)^{2}}{d g}
$$

is the measure function on the h-axis of a set R of the x-axis. This
integral is actually equal to $h(x)$ if and only if $h_{R}(1)=h(1)$. The condition that $g_{E}(1)=g(1)$ implies $h_{E}(1)=h(1)$ is surely necessary to provide that $h(x)=s(x)$, for $g_{E}(1)=g(1)$ implies $s_{E}(1)=s(1)$. On the other hand, if $g_{E}(1)=g(1)$ does imply $h_{E}(1)=h(1)$, the condition that $h_{R}(1)=h(1)$ is fulfilled and $h(x) \equiv s(x)$. This completes the proof.

References

1. E. D. Hellinger, Die Orthogonalinvarianten quadratischer Formen von unendlich vielen Veränderlichen, Inaugural-Dissertation, Göttingen, 1907.
2. Hans Hahn, Über die Integrale des Herrn Hellinger und die Orthogonalinvarianten der quadratischer Formen von unendlich vielen Veränderlichen, Monatshefte für Mathematik und Physik vol. 23 (1912) pp. 161-224.
3. E. W. Hobson, On Hellinger's integrals, Proc. London Math. Soc. vol. 18 (1919) pp. 249-265.
4. Henri Lebesgue, Legons sur l'intégration, Gauthier-Villars, Paris, 2d ed., 1928.

Northwestern University

