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1. Introduction. In connection with the consideration of second 
order linear partial differential equations of mixed type (that is, 
equations which are elliptic for some values of the independent vari
ables and hyperbolic for others) there arises an initial value problem, 
namely that of expressing a solution of the equation in terms of the 
values of the solution and of its normal derivative on a portion of 
the boundary between the regions of elliptic and of hyperbolic be
havior of the equation. Of particular interest are expressions in the 
form of single or multiple integrals representing the solution in terms 
of the prescribed data. These may enable us to deduce relationships 
between the initial data and various properties of the solution.2 

In the present paper such a formula is derived for solutions of the 
following equation of mixed type: 

(la) 1 - ( -» ) ' = 0 for x < 0, 
J dx2 J dy2 

(lb) xs = 0 for x > 0, 
dx2 dy2 

where s is any constant greater than — 1. For $ = 1 our equation coin
cides with one which has been studied in an important investigation 
by Tricomi [ó], see also [S], and which is met in the theory of two-
dimensional flows of a compressible fluid when we investigate the 
streamfunction yp in the so-called hodograph plane and make a cer
tain simplifying assumption concerning the equation of state of the 
fluid. See [l, 2, 4 ] . We note that the equation is elliptic for x < 0 , 
hyperbolic for x > 0. 

We shall derive here an integral representation for the solution of 
( la) , (lb) in terms of the prescribed values ^(0, y) = T(y) and 
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The ideas expressed in this paper represent the personal views of the author and not 
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2 As has been found in the study of equations of elliptic type and those of hyper
bolic type, it is possible to exploit various integral representations of their solutions 
for the investigation of their properties. For various possibilities in this direction see 
§3 and [3, p. 140 ff.]. Numbers in brackets refer to the bibliography at the end of the 
paper. 
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&x(0, y) = (d\l/(x, y)/dx)x-o = S(y), under the assumption that T{y) and 
S(y) are real analytic functions of y and therefore can be analytically 
continued into a domain B of the complex 77-plane (rj—y+iyi) which 
contains the portion of the real axis (yi = 0) along which T(y) and 
S(y) are initially defined. The solution obtained will, for each fixed 
value of yy be analytic in the real variable ( — x)2+8 for x < 0 and in the 
real variable #2+* for x>0.z 

I should like to take this opportunity to thank A. Zeichner for his 
valuable assistance in connection with the present paper. 

2. An integral representation for the solutions of equation (1). The 
solution ^ will be obtained as the sum of two solutions, ^ (1) and i^(2), 
of (1). These solutions will satisfy along the line x = 0 the conditions: 

(2) * ( 1 )(0, y) = T(y), ^(0, y) = 0, 

(3) * w ( 0 , y) = 0, J?(0, y) = S{y). 

Since (1) is linear and homogeneous, the desired solution \{/ may be 
obtained by superposition of ^ (1) and ^ (2 ) . 

r ( v ) ( l - X ) - < ^ > - l [ l + 5 - ^ ( n - y ) - » ] 
= ataXarj 

c (2+s)(rJ-y)[l+v"(V-y)-^ 

R= R(x) a (1 +s/2)-l\ x\l+'l2 

and where C is a simple closed curve in the plane of the complex variable 
nj—y+iyi, which curve encloses the circle \r]—y\ — R. If \x\ is so small 
that the curve C lies in the regularity domain of T(i)), then ^ (1 )(x, y) 
represents a solution of (la) which satisfies the initial conditions (2). 

PROOF. In order to prove our assertions, let us first write the re
quired solution in the form of a series: 

4rW(x, y) = r<°>(y) + T<2>(;y)(-x)2+* + r<4>(y)(--tf)2<2+*>+ • • • 
00 

= J^TU"\y)(-x)»u+>\ 

THEOREM 1. Let 

*0 >(*. y) 
(4) 1 /•"» r1 r 

where 

(5) v = -RX1'2 sin t, 

8 An interesting problem which we do not consider here is that of determining 
whether solutions of (1) exist which do not satisfy all the conditions of analyticity 
stated above. We note that here and in the following we write "(1)" instead of "(la)" 
and "(lb)." 
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Proceeding formally we obtain : 

oo 

*« = E T«»+»(y)[(n + 1)(2 + *)][(» + 1)(2 + s) - l](-x)»«+»+: 
n*»0 

Adding these last two equations and taking account of (la), we find 
that the functions r<°\ r<2\ JT<4), • • • must satisfy 

T™W--r,9AZ,yi, n' « = 1 , 2 , 3 , . . . . 
[«(2 + *)][«(2 + *) - 1] 

By repeatedly applying this recursion formula, we can express 
r<2n)(:y) in terms of d*«T(y)/dy2n, namely: 

(~l)nd!tnT(y)/dy2n 

ïï[*(2 + *)][*(2 + *)-l] 

Now let C be a curve satisfying the conditions stated in the theorem. 
Then the Cauchy integral formula enables us to rewrite the above 
equation in the following manner: 

(-l)n(2n)\£ 
IwiT^iy) « 

T(n)dt) 

a (n- y)in+1 

II[*(2 + *)][*(2+ * ) - ! ] 
(6) 

r T(v)dv (-l)«(2»)l* a (v-y)in+1 

»!(2 + s)'«n [* - (2 + s)~l] 
k=l 

Now, by applying the well known identities: T(n+1) =»! , r ( 2 » + l ) 
= (2»)!, and pT(p)-T(p+l), we find that (6) may be rewritten 

o .™„>/ N (-i)"["+i-(2+5)-1]r(»+i)r(2n+i)r(i-(2+5)-Q 
2xir (2n )(y) = - ; —— 

(2+*)**[r(n+l)]*r(»+2-(2+*)-1) 

x r
 TMdi> 

J C (>7 -(?7 - y ) * * H 
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Now, since 
T(2w + 1) 22"+1 r *i* 

[r(« + i)p 

r(» + i)r(i - (2 + 5)-1) 

X J o 
sin2w tdt, 

s)-i) n i 
-^—- = I X*(l - X)-<2+*> ldX9 

T(n + 2 - (2 + s)-1) 

we obtain finally: 
2wHT^(y) = (-1)»[» + 1 - (2 + 5)~1](2 + s)-2^2»*1 

(8) „ r W 2 . . . . , . r 1 _ , . _ , ^ - i w r * W i ƒ» T / 2 /» 1 / • JY. 
sin2w ^ I X»(l - X)-(2+*>"1JX A 

*=o •/ x=o J c (y — y) 2n+l 

— 7)2 . 

dtdXdrj. 

If we multiply both sides of (8) by ( — x)n(2+*} and sum for 
w = 0, 1, 2, • • • , we obtain: 

n-0 J «-0 J X - 0 . / C (?7 — y ) 

x [ w + 1 _ ( 2 + 5 ) - 1 ] l___l £ 
Let the minimum distance of the point y, considered temporarily 

fixed, from the curve C be ^ i£ + S (see (5)), S any small positive con
stant. Then, since X and sin2 / never exceed one in absolute value, 

A P -, r ~ 4 X ( - ^ ) 2 + * sin2 n » 

will converge absolutely and uniformly since 4 (—x)2+'/ (2+5)21 r;—y \2 

^(R/(R+è)y^l—e, and the sura of the above series will be 
( t t + 1 4 - s ) / ( 2 + s ) ( l - t t ) 2 where« = -éX(-x)2+> sin2 t/(2+s)2(ri-y)2 

= — v2/{y\ —y)2. Since we may interchange the order of summation 
and integration, we thus obtain from (9) : 

* ( 1 ) (* , y) 

(io)=j_ r*>2 r* r rfaXi-x)-™*)-1^-^-?)-*] 
THJU+JX^JO (2+s)(v-y)[l+v2(v-y)-2]2 V' 

COROLLARY 1. The function 

tm(x, y) 
(11) 1 ç,n ci £ 7^0(1-X)- (2+* )~1[l+s+z'2( )j-;y)- i !] 

~^HJt-o Jx-oJ c (2+s)(r,-y)[l-v2(r,-y)-2]2 *****'' 
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representsy for sufficiently small positive values of x, a solution of (lb) 
which satisfies the initial conditions (2). 

PROOF. The derivation of formula (11) is entirely parallel to that 
of (4). We have only to take into account that ( —x)8 has to be re
placed by —x\ 

THEOREM 2. The expression 

*W(», y) 

(12) x r*12 r1 r S(v)(l-^)i2+9)~l[S+s+v2(v-y)-2] -ACT <f-
TTH J t=o J x=o J c 

(2+*) (,-y) [!+»«(,-y)-«]« 
dtdXdr}, 

where C and r\ have the meaning explained in Theorem 1, and S(y) is an 
arbitrary real analytic function of one real variable, represents a solu
tion of (la) which satisfies the initial conditions (3). 

PROOF. The proof proceeds exactly as in Theorem 1. We write: 

(13) ypw(xt y) = - £ r(2n+i)(:v)(_x)i+n(2+5)> Ta)(y) s s(y), 

which formally satisfies conditions (3). Proceeding as in the proof of 
Theorem 1, we find that the J,(2n+1) can be expressed as derivatives of 
T<», namely: 

(14) r<»«+i>(y) = —n ^ - ^ , n = 1, 2, 3, • • • , 

nl(2 + sy»f[(k + (s + 2)-1) 
*=i 

or: 

-2wHT^n+1)(y)(- x)i+»<2+«> 

22»+1[w + 1 + (2 + 5 ) - 1 ] ( -1)«( - :K)«(«+ 2 ) 

(15) ~ * (2 + s)*» 

• f' f £ — sin2»*-X«(l - XV'+V'dtdXdr,. 

Summing for »=0 , 1, 2, 3, • • • , we get, for values of * sufficiently 
close to zero: 

2irH+M(x, y) 

= - * f " C £ 25(»)(1 -X)<2+«>-l[3+s+v*(v-y)-2] 
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which yields the statement of Theorem 2. 
Finally, by repeating the reasoning used in the proof of Corollary 1, 

we obtain: 

COROLLARY 2. The expression 

* ( 2 ) (* , y) 

(17) ^f*12 f1 f S(y)(l-X)o*)-1 [3+J-» ' (? -y) -*] Mxd 

represents, for sufficiently small positive values of x, a solution of (lb) 
which satisfies the initial conditions (3). 

3. Concluding remarks. In §2 we did not indicate explicitly the 
domain of the #;y-plane in which the representations (4), (11), (12), 
(17) hold, but an almost obvious consideration shows that representa
tions (4) and (11) are valid in the domain4 ^T^J [y = Y,R(x) <r(Y)] 
(see (5)), where J denotes the intersection of the (real) y-axis with 
the regularity domain B of T(rj), rj=y+iyit in the (complex) rç-plane 
and r(Y) the distance of Y from the boundary of B. (It should be 
mentioned that using, in addition, certain summation methods, one 
might obtain representations which are valid in larger domains of the 
x^-plane.) 

If T(y) and S(y) become, upon continuation into the complex 
77-plane, entire functions, then the above representation can be used 
to define \f/(x, y) for all values of x and y, for in this case the curve C 
can always be chosen in such a way as to provide the determination 
^(#, y) a t any preassigned point.5 

As has been shown in another place, integral formulas transform
ing analytic functions of one complex variable into solutions of a 
linear partial differential equation can be used in order to derive 
various results from theorems in the theory of functions pertaining to 
solutions of these equations. As an example for such a procedure, we 
shall obtain upper bounds for the growth of \J/(1) and ^ (2) from the 
derivatives, n\an of T(y) and n\bn of S(y) respectively, at some fixed 
point, say at the origin. 

In order to obtain this relation, we shall rewrite the formulas (4), 
(11), (12), and (17) in a certain modified form, which form holds in 
the case where T(rj) or S(rj) are entire functions. 

4 ^L,Y&J denotes the sum of all points x, y where for every F, x ranges over the 
interval indicated in the bracket, and Y ranges over / . 

6 In order to apply the method of §2 in the case where T(y) and S(y) are not 
analytic functions of one real variable y, we have to approximate T(y) and Siy) by 
analytic functions, say by polynomials. 
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LEMMA 3.1. Under the assumption that T(rj) is an entire function of a 
complex variable, the representation (4) can be written in the form 

2 / 1 1 + A r1 H + * t > 
*(«(*, y) = - B - , — — ) — — {Re T(y + iRq)} 

7T \ 2 2 + s/ J H L2 + 5 

{im r (y + iRq)} 1 (1 - q2)s^+2^dq 

(Re = Real part of • • • , Im = Imaginary part of - • • ). 

PROOF. The proof of representation (18) follows immediately by 
the use of the Cauchy integral formula. We may write (4) in the form 

(19) 

I p T/2 p 1 

I J c (2+s)[(r,-y)*+v*]* ) K 

Since we assume that x<0, v can vanish only when X = 0, or t = 0. 
On the other hand, it is easy to show that (19) may also be written 

in the form 

(20) 

I p TT/2 p 1 
*<»(*, y) = lim — I 

XI c (2+s)[(r)-yy+v>]> 

In order to evaluate the integral in the braces, we now apply the 
Cauchy theorem. 

Since v never becomes 0, the only poles of the integrand are rj =y ±iv. 
In order to determine the value of the integral in the braces, we have 
to determine the residues of the integrand considered as a function of 
rj at the points rj=y±iv. A formal computation yields 

TbiKv - y)[(l + s){r, - y)* - v*) 
(2+ *)[(„- yy + v*]* 

(21) _( i+i) ir r<-> +
 r'-> ] 

\ 2 + s/ 2 Ly — y + vo v — y — ivj 

_ ivf T(rj) r(iy) "I 

4 L(̂ 7 - y + iv)* (v — y - iv)*J 

Using (20), (21) and Cauchy's integral formula, we obtain 
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*(1>(*, y) = - — — {Re T(y + iv)} 
7T J t*=0 J X~0 L2 + S 

(22) 
- — {lm r ( y + iv)} 1 (1 - X)-<**>~ldtóX. 

Equation (22) may also be written in the form 

2 /• (W2)-5 / - i -« r i + s 
^<i>(*, y) = Hm — Re r ( y + w) 

, . $->0,e->0 W J t~0 J X-0 L2 + S 
(23) 

- — lm T'(^ + iv)I (1 - X)-<2+*>~VtóX 

If now we introduce the variables [see (5) ] 

v X1'2 cos / 
q = X ^ s i n / s — , 5 [1 - X sin21]1'2 

that is, 

X = T2 + q2 - r2q2, t = arctan [ g f ^ l - g2)~1/2] 

and pass to the limit, we obtain the representation 

4 fx r1 P + * 
*<!>(*, y) = _ _ — Re T(y + « g ) 

ÎT J g=0 •/ T~0 L2 + 5 
(24) Rq 

iRq)~\(l - 22)*/<4+2*)(l - r2)-^^~ldrdq. - ~ Im r (y + i 

Integration of the right-hand side with respect to r yields the desired 
result. 

Exactly the same considerations can be repeated in the case of rep
resentations (11), (12), and (17). 

THEOREM 3.1. Let \f/(1) be an analytic solution of (la) satisfying con
dition (2). If T(y) = 2Z*»o anyn is an entire function {when continued 
to the complex values of the argument), then \J/(1)(x, y) can be extended to 
all values of y and x, x<0. ^ (1 ) satisfies the inequality 

| fM(x, y) | g Me*rP[l + 2(1 + s)~l(-xyw*], 

r = [y2 + 4(2 + s)~2(-x)2**]1'2 

where M is a suitably chosen constant and p and a are given by 

n log n , , 
(26) p = lim sup -s :— ; (<rpe)1/p = lim sup nllf>( \ an | )

1 / n . 
«-•co log ( 1 / J an I ) »-*oo 
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The proof of this inequality follows immediately from the repre
sentation (18) and the fact that by classical results of the theory of 
entire functions of one complex variable, the inequality | T(rj) \ 
^Me°^p holds. 

The expression (18) can be simplified further when s^O by using 
the fact that - i ? [ I m T'(y+iRq)]=*d[Re T(y+iRq)]/dq and then 
integrating by parts. This yields: 

2 / 1 1 + s\ s 
f<D(s, y) = — B( — , ) 

( 2 7 ) * \ 2 2 + ^ / 4 + 2 , 

X f [Re T(y + iSq)](l - q*)<~^'»w>dq for s > 0, 

(28) *<*>(*, y) = Re [T(y + ix)] for 5 = 0. 

By noting the fact that 

.r iBfi , i±i)_£_r 
LIT \ 2 2 + S/4 + 25J 

we finally obtain the formula 

f [Re T(y + iRq)](l - g»)(-*-»)/(4+».)j? 

(29) *<»(*, y) = - ^ -

ƒ. 
1 

0=0 

Thus for s ^ 0, we obtain the following result. 

THEOREM 3.2. Le/ ^ (1) fo an analytic solution of (la) satisfying con
dition (2). /ƒ IXrç) is ew/ire awd s è 0, then using the notation of Theorem 
3.1, we obtain 

(30) I fM(x, y) I ^ Me"p. 

The proof of this inequality follows immediately from (28) and (29). 
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HARVARD UNIVERSITY 

AN INVERSION FORMULA FOR THE GENERALIZED 
STIELTJES TRANSFORM 

D. B. SUMNER1 

1. Introduction. The problem of finding formulae to invert the 
Stieltjes transforms 

(1) ƒ(*)= f°da(t)/(x + t), 
J o 

(2) ƒ(*)= f°<l>(f)dt/(x + t), 
J o 0 

and the generalized transforms 

(3) ƒ(*) = CdaW/ix + ty, 
J o 

(4) ƒ(*)= C°4>(t)dt/(x + ty, 
J o 

has been solved by Widder [A, pp. 7-60 ]2 and by Pollard [F, pp. 14-
16]. The function $(/)£Z,(0, oo), a(t) is a normalized function of 
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