ON THE MEAN MODULUS OF AN ANALYTIC FUNCTION

E. F. BECKENBACH, W. GUSTIN, AND H. SHNIAD

Throughout this paper $f=f(z)$ will denote an analytic function of the complex variable z in the open unit circle $|z|<1$. The circle $C(r)$, on which $|z|=r$, of radius $r \geqq 0$ about the origin $z=0$ lies in the region of analyticity of f provided $r<1$. For every positive real parameter $t(0<t<\infty)$ the mean of order t of the modulus of f on the circle $C(r)$ is defined as

$$
\begin{equation*}
M_{t}(r ; f)=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| t d \theta\right]^{1 / t} \tag{1}
\end{equation*}
$$

For fixed f and r this mean modulus $M_{t}(r ; f)$ as a function of t is continuous, nonnegative, nondecreasing, and is bounded above by the maximum modulus of f on $C(r)[1,2] .{ }^{1}$ Therefore the limit of $M_{t}(r ; f)$ exists as $t \rightarrow 0$ and $t \rightarrow \infty$. This limit is defined to be the mean modulus of f on $C(r)$ of order 0 and of order ∞ respectively. It may be shown that the mean modulus of order 0 is the geometric mean of the modulus of f on $C(r)$, which is simply evaluated by Jensen's formula, and that the mean modulus of order ∞ is the maximum modulus of f on $C(r)[1,2]$. Thus $M_{t}(r ; f)$ is defined for all parameters t in the compact infinite interval $0 \leqq t \leqq \infty$.

For fixed f and $t(0 \leqq t \leqq \infty)$ the mean modulus $M_{t}(r ; f)$ as a function of r in the interval $0 \leqq r<1$ is continuous, nonnegative, nondecreasing, and, except for the limiting parameters 0 and ∞, possesses a continuous derivative with respect to $r[1,3]$. Moreover, its logarithm is a nondecreasing convex function of $\log r$ (for $t=\infty$ this is the Hadamard three-circle theorem) [1, 3].

We shall be concerned here with the convexity of the mean modulus $M_{t}(r ; f)$ as a function of r. Let $T(f)$ be the set of all parameters t in the compact infinite interval $0 \leqq t \leqq \infty$ such that $M_{t}(r ; f)$ is a convex function of r in the interval $0 \leqq r<1$. Since $M_{t}(r ; f)$ is continuous with respect to the parameter t and since any function which is the limit of convex functions is also convex, the set $T(f)$ is a closed and hence compact subset of the parameter interval $0 \leqq t \leqq \infty$. The set $T(f)$ need not, however, coincide with the entire parameter interval and indeed

Presented to the Society, December 30, 1947; received by the editors February 16, 1948.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.
may be a bounded subset of this interval as shown by the following example. Let

$$
f(z)=(z+\epsilon) /(1+\epsilon z), \quad|z|<1,0<\epsilon<1
$$

This linear fractional function maps the open unit circle onto itself and maps the circle $C(r)$ into a circle whose maximal distance from the origin is attained at the image point $f(r)$. Therefore

$$
M_{\infty}(r ; f)=f(r)
$$

which is easily seen to be a strictly concave function of r. Thus the set $T(f)$ for this function f does not contain the parameter ∞ and hence, being closed, is bounded.

Theorem. The set $T(f)$ contains the values $t=2 / k(k=1,2,3, \cdots)$ and their limit value $t=0$. Furthermore, if f has at most k zeros counting multiplicities $(k=1,2,3, \cdots)$, then $T(f)$ contains the closed interval $0 \leqq t \leqq 2 / k$.

Proof. Evidently the theorem is true for a constant function f, so we may assume that f is nonconstant. We shall first investigate the convexity of the mean modulus $M=M_{t}(r ; f)$ in any open interval $\alpha<r<\beta$ such that the associated open annulus $\alpha<|2|<\beta$ contains no zeros of f.

Let the integer $m \geqq 0$ be the number of zeros, counting multiplicities, which lie in the closed circular interior, $|z| \leqq \alpha$, of the nonconstant function $f(z)$. If $m>0$, we denote these m zeros, counting multiplicities, by $z_{h}(h=1, \cdots, m)$. The function

$$
\begin{equation*}
A(z)=\prod_{1}^{m}{ }_{h}\left(1-\frac{z_{h}}{z}\right) \tag{2}
\end{equation*}
$$

(where we understand any such product to have the value 1 if $m=0$) is then analytic and has no zeros in the open simply-connected circular exterior $|z|>\alpha$ including $z=\infty$. A single-valued function $a(z)$, analytic in this open circular exterior, then exists such that

$$
\begin{equation*}
A(z)=a(z)^{2 / t} \tag{3}
\end{equation*}
$$

Since $f(z)$ has no zeros in the open annulus $\alpha<|z|<\beta$, the only zeros of $f(z)$ in the open circular interior $|z|<\beta$ are the zeros $z_{h}(h=1, \cdots, m)$. Consequently the function

$$
\begin{equation*}
B(z)=f(z) / \prod_{1}^{m}\left(z-z_{h}\right) \tag{4}
\end{equation*}
$$

is analytic and has no zeros in the open simply-connected circular
interior $|z|<\beta$. A single-valued function $b(z)$, analytic in this open circular interior, then exists such that

$$
\begin{equation*}
B(z)=b(z)^{2 / t} \tag{5}
\end{equation*}
$$

From (2), (3), (4), and (5) we see that

$$
\begin{equation*}
f(z)=z^{m} A(z) B(z)=z^{m} a(z)^{2 / t} b(z)^{2 / t}=z^{m} c(z)^{2 / t} \tag{6}
\end{equation*}
$$

where the function $c(z)=a(z) b(z)$ is single-valued and analytic in the open annulus $\alpha<|z|<\beta$ and hence admits a Laurent expansion

$$
\begin{equation*}
c(z)=\sum_{-\infty}^{\infty}{ }_{p} c_{p} z^{p} \tag{7}
\end{equation*}
$$

in this annulus. In the associated interval $\alpha<r<\beta$ we define

$$
\begin{equation*}
s(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|c\left(r e^{i \theta}\right)\right|^{2} d \theta \tag{8}
\end{equation*}
$$

This integral (8) may be evaluated in terms of the coefficients of the series (7) according to the well known formula

$$
\begin{equation*}
s(r)=\sum_{-\infty}^{\infty}{ }_{p}\left|c_{p}\right|^{2} r^{2} p \tag{9}
\end{equation*}
$$

From (1), (6), and (8) we see that

$$
M=r^{m_{s}}{ }^{1 / t}
$$

Differentiating this expression twice with respect to r we obtain the formula

$$
\begin{align*}
\mu & =t^{2} r^{2} s^{2} M^{\prime \prime} / M \\
& =t^{2} m(m-1) s^{2}+2 t m s r s^{\prime}+(1-t) r^{2} s^{2}+t s r^{2} s^{\prime \prime} \tag{10}
\end{align*}
$$

where primes denote differentiation with respect to r.
Now consider the function

$$
\begin{equation*}
N=r^{n} s^{1 / 2} \tag{11}
\end{equation*}
$$

where n is an as yet undetermined integer. Differentiating this expression twice with respect to r we obtain the formula

$$
\begin{equation*}
\nu=4 r^{2} s^{2} N^{\prime \prime} / N=4 n(n-1) s^{2}+4 n s r s^{\prime}-r^{2} s^{\prime 2}+2 s r^{2} s^{\prime \prime} \tag{12}
\end{equation*}
$$

Substitution of the power series (9) into (12) gives

$$
\nu=\sum_{-\infty}^{\infty}{ }_{p q} \nu_{p q}\left|c_{p} c_{q}\right|^{2} r^{2 p+2 q}
$$

where the symmetrized coefficient $\nu_{p q}=\nu_{q p}$ has the value

$$
\nu_{p q}=(2 n+p+q-1)^{2}+3(p-q)^{2}-1 .
$$

By examining the two cases $p=q$ and $p \neq q$ it is easy to see, since n, p, q are integers, that $\nu_{p q} \geqq 0$. Consequently $\nu \geqq 0$ and $N^{\prime \prime} \geqq 0$.

If $t=2$ and $n=m$, then $N=M$, whence $M^{\prime \prime} \geqq 0$. Therefore $M_{t}(r ; f)$ is a convex function of r in $\alpha<r<\beta$ if $t=2$.
We now show that $M_{t}(r ; f)$ is a convex function of r in $\alpha<r<\beta$ if $0<t<2$ and if the open interval

$$
I_{t}(m): \quad t m-t<x<t m
$$

contains no even integer. Evidently the interval

$$
t m-t<x \leqq t m-t+2
$$

contains exactly one even integer $2 n$. Since $2 n$ does not lie in the interval $I_{t}(m)$ we conclude that

$$
t m \leqq 2 n \leqq t m-t+2
$$

whence

$$
\begin{equation*}
t m-2 n \leqq 0 \leqq t m-2 n+2-t . \tag{13}
\end{equation*}
$$

Now let this integer n be the n of (11). Consider the following expression quadratic in the variables s and
$r s^{\prime}: \phi=2 \mu-t \nu=2 t(t m(m-1)-2 n(n-1)) s^{2}+4 t(m-n) s r s^{\prime}+(2-t) r^{2} s^{\prime 2}$.
The discriminant of this quadratic form is

$$
\Delta=8 t(t m-2 n)(t m-2 n+2-t) .
$$

Since $0<t<2$ the coefficient $2-t$ of $r^{2} s^{\prime 2}$ in ϕ is positive, and from (13) we see that $\Delta \leqq 0$. Therefore $\phi \geqq 0$ and, as we have already shown, $\nu \geqq 0$, so we conclude that

$$
2 \mu=\phi+t \nu \geqq 0,
$$

whence $M^{\prime \prime} \geqq 0$ in the interval $\alpha<r<\beta$.
The open interval $I_{t}(m)$ contains no even integer $2 h$, if t is of the form $2 / k(k=2,3, \cdots)$; else we would have the inequality

$$
m-1<h k<m
$$

which is impossible since h, k, m are integers. Moreover, it is evident that the open interval $\boldsymbol{I}_{t}(m)$ contains no even integer if $0<t<2$ and $m=0$ or if $0<t<2 / m$ and $m \geqq 1$. Therefore $M_{t}(r ; f)$ is a convex func-
tion of r in $\alpha<r<\beta$ if $t=2 / k(k=1,2,3, \cdots)$ or if $0<t \leqq 2 / k$ $(k=1,2,3, \cdots)$ and $m \leqq k$.

It is easy to see how the theorem follows from this result. As we have already mentioned, the mean modulus M possesses a continuous derivative M^{\prime} with respect to r in the interval $0 \leqq r<1$ provided $0<t<\infty$. We have shown that under certain conditions M is convex in any open subinterval of $0 \leqq r<1$ which contains no moduli of zeros of f; therefore under these conditions M^{\prime} is nondecreasing in any subinterval closed in $0 \leqq r<1$ which contains no moduli of zeros of f in its interior. Since the zeros of the nonconstant analytic function f are isolated, the collection of all such closed subintervals covers the interval $0 \leqq r<1$. Thus M^{\prime} is a nondecreasing function of r and hence M is a convex function of r in this interval.

The theorem is proved except for inclusion of the value $t=0$. However, since $T(f)$ is closed and contains the values $t=2 / k$ ($k=1,2,3, \cdots$) it also contains the limit value $t=0$. That $T(f)$ contains the value $t=0$ may also be seen directly from the Jensen formula for the geometric mean.

The following corollary concerns the length $l(r ; f)$ of the map under f of the circle $C(r)$.

Corollary. Both the length $l(r ; f)$ of the map under f of the circle $C(r)$ and the circular expansion ratio $l(r ; f) / 2 \pi r$ are nondecreasing convex functions of r in the interval $0 \leqq r<1$.

Proof. It suffices merely to exhibit the following formula for the length of the map of $C(r)$:

$$
l(r ; f)=\int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| r d \theta=2 \pi r \cdot M_{1}\left(r ; f^{\prime}\right)
$$

where f^{\prime} is the derivative of f and hence is analytic in the open unit circle.

Theorem. If f vanishes at the origin, then $T(f)$ contains the entire parameter interval $0 \leqq t \leqq \infty$.

Proof. The theorem is evidently true if f is of the form $c z$ where c is a constant. If f is not of this simple form, then, since f vanishes at $z=0$, there exists a nonconstant function g, analytic in the open unit circle, such that

$$
f(z)=z g(z)
$$

For a fixed parameter t in the interval $0<t<\infty$ let $F=M_{t}(r ; f)$ and $G=M_{t}(r ; g)$, so that

$$
\begin{equation*}
F=r G \tag{14}
\end{equation*}
$$

We shall denote successive differentiations of a function with respect to r by primes, and successive differentiations of the logarithm of a function with respect to $\log r$ by asterisks. In any interval $\alpha<r<\beta$ containing no moduli of zeros of the nonconstant analytic function g the first and second prime and asterisk derivatives of G exist and are connected by the following relations:

$$
\begin{aligned}
r G^{\prime} & =G G^{*} \\
r^{2} G^{\prime \prime} & =G\left(G^{* *}+G^{* 2}-G^{*}\right)
\end{aligned}
$$

Differentiating (14) twice with respect to r and using these relations we obtain the formula

$$
r F^{\prime \prime}=r^{2} G^{\prime \prime}+2 r G^{\prime}=G\left(G^{* *}+G^{* 2}+G^{*}\right)
$$

As we have already mentioned $G^{*} \geqq 0$ and $G^{* *} \geqq 0$, so that $F^{\prime \prime} \geqq 0$ in $\alpha<r<\beta$. The extension of convexity of F to $0 \leqq r<1$ proceeds as before. Therefore $T(f)$ contains the interval $0<t<\infty$ and being closed also includes the limiting parameters $t=0$ and $t=\infty$.

According to Schwarz's lemma the maximum modulus on the circle $C(r)$ of an analytic function f, which maps the origin into itself and the open unit circle into itself, is not greater than r. The above theorem shows that this maximum modulus is also a convex function of r.

Although the mean modulus $M_{t}(r ; f)$ may not be convex in the entire interval $0 \leqq r<1$, it may be convex in some subinterval containing $r=0$. We define $\rho(t ; f)$ to be the length of the maximal such subinterval if one exists and to be 0 if no such subinterval exists. Since the limit function of convex functions is convex, it is clear that

$$
\rho(t ; f) \geqq \lim _{t^{\prime} \rightarrow t} \sup \rho\left(t^{\prime} ; f\right),
$$

whence $\rho(t ; f)$ is an upper semicontinuous function of t.
We now show that $\rho(t ; f)>0$ if $0 \leqq t<\infty$. We have already seen by example that $\rho(\infty ; f)$ may be 0 . Since $\rho(t ; f)=1$ if $t=0$, if f is constant, or if f vanishes at $z=0$, we may suppose that $0<t<\infty$ and that f is a nonconstant analytic function which does not vanish at $z=0$. A neighborhood $|z|<\beta$ of $z=0$ then exists in which f does not vanish. Thus, in the notation of our first theorem we have $m=0$ and $A(z)=1$. The expansion (7) is then a Taylor expansion with $c_{0} \neq 0$. Moreover, since f is nonconstant, not all the coefficients $c_{1}, c_{2}, c_{3}, \cdots$ vanish. Let $c_{q} \neq 0$ be the first such nonvanishing coefficient. Substitution of the power series (9) into (10) gives

$$
\mu=2 t q(2 q-1)\left|c_{\theta} c_{q}\right|^{2} r^{2 q}+O\left(r^{2 q+2}\right)
$$

Since q is a positive integer we infer that $\mu>0$ and hence $M^{\prime \prime}>0$ in some neighborhood of $r=0$. Consequently $\rho(t ; f)>0$.

We conclude with the following question: Is $\rho(t ; f)$ a continuous, non-increasing function of t ?

References

1. P6lya and Szegö, Aufgaben und Lehrsätze aus der Analysis I, Berlin, 1925, pp. 143-144.
2. Hardy, Littlewood, Polya, Inequalities, Cambridge, 1934, pp. 134-146.
3. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc. (2) vol. 14 (1915) pp. 269-277.

University of California, Los Angeles,
Indiana University, and
University of California, Los Angeles

