AN INTEGRATION SCHEME OF MARÉCHAL

J. ERNEST WILKINS, JR.

The French physicist Maréchal $[1]^1$ has invented a mechanical integrator for studying the distribution of light in an optical image. This integrator approximates a double integral $\int_0^{2\pi} \int_0^R f(r, \phi) r dr d\phi$ by a line integral $2\pi a \int_{c} f(r, \phi) ds$ extended over that portion of an archimedean spiral

C:
$$r = a\phi$$

which lies inside the circle $0 \le r \le R$, $0 \le \phi < 2\pi$. The validity of this procedure when $f(r, \phi)$ is continuous (as it always is in the case of the integrals determining distribution of light in an optical image) was taken for granted by Maréchal when a is small. It is the purpose of this note to justify Maréchal's approximation by proving the following theorem.

THEOREM. If $f(r, \phi)$ is continuous on $0 \le r \le R$, $0 \le \phi < 2\pi$ and is periodic with period 2π in ϕ , then

(1)
$$\lim_{a=0} 2\pi \int_0^R f(r, r/a) (a^2 + r^2)^{1/2} dr = \int_0^{2\pi} \int_0^R f(r, \phi) r dr d\phi.$$

Let us define

(2)

$$P_{N}(\mathbf{r}, \phi) = \frac{1}{2N\pi} \int_{0}^{\pi} \{f(\mathbf{r}, \phi + u) + f(\mathbf{r}, \phi - u)\} \sin^{2}(Nu/2) \csc^{2}(u/2) du,$$

$$a_{nN}(\mathbf{r}) = \frac{1}{2\pi} (1 - |n|/N) \int_{0}^{2\pi} f(\mathbf{r}, \phi) e^{-in\phi} d\phi.$$

Then it is known from the theory of (C, 1) summability of Fourier series that

(3)
$$P_N(r,\phi) = \sum_{n=-(N-1)}^{n=N-1} a_{nN}(r)e^{in\phi},$$
$$\lim_{N=\infty} P_N(r,\phi) = f(r,\phi)$$

uniformly on $0 \le r \le R$, $0 \le \phi < 2\pi$. For each positive ϵ we can therefore

Received by the editors February 19, 1948.

¹ Numbers in brackets refer to the reference cited at the end of the paper.

pick an integer N such that

(4)
$$|P_N(\mathbf{r}, \phi) - f(\mathbf{r}, \phi)| < \epsilon/3\pi R^2.$$

Let M be the maximum of $|f(r, \phi)|$. Then

$$\left| 2\pi \int_{0}^{R} f(r, r/a) (a^{2} + r^{2})^{1/2} dr - 2\pi \int_{0}^{R} f(r, r/a) r dr \right|$$
$$\leq 2\pi M \int_{0}^{R} \{ (a^{2} + r^{2})^{1/2} - r \} dr < \epsilon/3$$

if a is less than a suitably chosen $A_1(\epsilon)$. Moreover, since (4) holds

$$\left|2\pi\int_{0}^{R}f(r,r/a)rdr-2\pi\int_{0}^{R}P_{N}(r,r/a)rdr\right|<\epsilon/3.$$

By virtue of (3),

$$\left| 2\pi \int_{0}^{R} P_{N}(r, r/a) r dr - 2\pi \int_{0}^{R} a_{0N}(r) r dr \right| \leq 2\pi \sum_{|n|=1}^{N-1} \left| \int_{0}^{R} a_{nN}(r) e^{inr/a} dr \right|.$$

Since N is fixed when ϵ is chosen we infer from the Riemann-Lebesgue lemma (which is surely applicable since we see from (2) that $a_{nN}(r)$ is continuous) that if a is less than a suitably chosen $A_2(\epsilon)$, then

$$\left|2\pi\int_{0}^{R}P_{N}(r, r/a)rdr - 2\pi\int_{0}^{R}a_{0N}(r)rdr\right| < \epsilon/3.$$

Since it follows from (2) that $2\pi \int_0^R a_{0N}(r) r dr = \int_0^{2\pi} \int_0^R f(r, \phi) r dr d\phi$, we can now conclude from the above inequalities that when $a < A_1(\epsilon)$, $a < A_2(\epsilon)$,

$$\left|2\pi\int_0^R f(r, r/a)(a^2+r^2)^{1/2}dr - \int_0^{2\pi}\int_0^R f(r, \phi)rdrd\phi\right| < \epsilon,$$

and the theorem is an immediate consequence of this inequality.

Reference

1. A. Maréchal, Mechanical integrator for studying the distribution of light in the optical image, Journal of the Optical Society of America vol. 37 (1947) pp. 403-404.

American Optical Company

192