# AN INTEGRATION SCHEME OF MARECHAL 

## J. ERNEST WILKINS, JR.

The French physicist Maréchal [1] ${ }^{1}$ has invented a mechanical integrator for studying the distribution of light in an optical image. This integrator approximates a double integral $\int_{0}^{2 \pi} \int_{0}^{R} f(r, \phi) r d r d \phi$ by a line integral $2 \pi a \int_{c} f(r, \phi) d s$ extended over that portion of an archimedean spiral

C:

$$
r=a \phi
$$

which lies inside the circle $0 \leqq r \leqq R, 0 \leqq \phi<2 \pi$. The validity of this procedure when $f(r, \phi)$ is continuous (as it always is in the case of the integrals determining distribution of light in an optical image) was taken for granted by Maréchal when $a$ is small. It is the purpose of this note to justify Maréchal's approximation by proving the following theorem.

Theorem. If $f(r, \phi)$ is continuous on $0 \leqq r \leqq R, 0 \leqq \phi<2 \pi$ and is periodic with period $2 \pi$ in $\phi$, then
(1) $\lim _{a=0} 2 \pi \int_{0}^{R} f(r, r / a)\left(a^{2}+r^{2}\right)^{1 / 2} d r=\int_{0}^{2 \pi} \int_{0}^{R} f(r, \phi) r d r d \phi$.

Let us define

$$
P_{N}(r, \phi)=\frac{1}{2 N \pi} \int_{0}^{\pi}\{f(r, \phi+u)
$$

$$
\begin{equation*}
+f(r, \phi-u)\} \sin ^{2}(N u / 2) \csc ^{2}(u / 2) d u, \tag{2}
\end{equation*}
$$

$$
a_{n N}(r)=\frac{1}{2 \pi}(1-|n| / N) \int_{0}^{2 \pi} f(r, \phi) e^{-i n \phi} d \phi .
$$

Then it is known from the theory of $(C, 1)$ summability of Fourier series that

$$
\begin{align*}
P_{N}(r, \phi) & =\sum_{n=(N-1)}^{n=N-1} a_{n N}(r) e^{i n \phi},  \tag{3}\\
\lim _{N=\infty} P_{N}(r, \phi) & =f(r, \phi)
\end{align*}
$$

uniformly on $0 \leqq r \leqq R, 0 \leqq \phi<2 \pi$. For each positive $\epsilon$ we can therefore
Received by the editors February 19, 1948.
${ }^{1}$ Numbers in brackets refer to the reference cited at the end of the paper.
pick an integer $N$ such that

$$
\begin{equation*}
\left|P_{N}(r, \phi)-f(r, \phi)\right|<\epsilon / 3 \pi R^{2} \tag{4}
\end{equation*}
$$

Let $M$ be the maximum of $|f(r, \phi)|$. Then

$$
\begin{aligned}
\mid 2 \pi \int_{0}^{R} f(r, r / a)\left(a^{2}+r^{2}\right)^{1 / 2} d r- & 2 \pi \int_{0}^{R} f(r, r / a) r d r \mid \\
& \leqq 2 \pi M \int_{0}^{R}\left\{\left(a^{2}+r^{2}\right)^{1 / 2}-r\right\} d r<\epsilon / 3
\end{aligned}
$$

if $a$ is less than a suitably chosen $A_{1}(\epsilon)$. Moreover, since (4) holds

$$
\left|2 \pi \int_{0}^{R} f(r, r / a) r d r-2 \pi \int_{0}^{R} P_{N}(r, r / a) r d r\right|<\epsilon / 3
$$

By virtue of (3),

$$
\begin{aligned}
\left|2 \pi \int_{0}^{R} P_{N}(r, r / a) r d r-2 \pi \int_{0}^{R} a_{0 N}(r) r d r\right| & \\
& \leqq 2 \pi \sum_{|n|=1}^{N-1}\left|\int_{0}^{R} a_{n N}(r) e^{i n r / a} d r\right|
\end{aligned}
$$

Since $N$ is fixed when $\epsilon$ is chosen we infer from the Riemann-Lebesgue lemma (which is surely applicable since we see from (2) that $a_{n N}(r)$ is continuous) that if $a$ is less than a suitably chosen $A_{2}(\epsilon)$, then

$$
\left|2 \pi \int_{0}^{R} P_{N}(r, r / a) r d r-2 \pi \int_{0}^{R} a_{0 N}(r) r d r\right|<\epsilon / 3
$$

Since it follows from (2) that $2 \pi \int_{0}^{R} a_{0 N}(r) r d r=\int_{0}^{2 \pi} \int_{0}^{R} f(r, \phi) r d r d \phi$, we can now conclude from the above inequalities that when $a<A_{1}(\epsilon)$, $a<A_{2}(\epsilon)$,

$$
\left|2 \pi \int_{0}^{R} f(r, r / a)\left(a^{2}+r^{2}\right)^{1 / 2} d r-\int_{0}^{2 \pi} \int_{0}^{R} f(r, \phi) r d r d \phi\right|<\epsilon
$$

and the theorem is an immediate consequence of this inequality.

## Reference

1. A. Maréchal, Mechanical integrator for studying the distribution of light in the optical image, Journal of the Optical Society of America vol. 37 (1947) pp. 403-404.

American Optical Company

