A METHOD OF ANALYTIC CONTINUATION SUGGESTED BY HEURISTIC PRINCIPLES

H. BRUYNES AND G. RAISBECK¹

Suppose we are given an analytic function f(z) represented by a power series (supposed convergent for some $z \neq 0$)

(1)
$$f(z) = \sum_{n=0}^{\infty} \frac{f_n}{n!} z^n$$

where f_n is the value of the *n*th derivative of f(z) at the origin. For small values of δ we can approximate $f(\delta)$ in the following manner:

(2)
$$f(\delta) \simeq f_0 + \delta f_1.$$

Refinement of this approximation leads to Taylor's theorem and back to the power series (1). It is possible, however, to use the linear approximation in a different way: we can use such approximations to go from one point to another along a chain of points $z = \delta$, 2δ , 3δ , \cdots , $n\delta$. Thus we shall say

$$f(\delta) \simeq f_0 + \delta f_1, \qquad f'(z) \Big|_{z=\delta} \simeq f_1 + \delta f_2,$$

and so on, and

$$f(2\delta) \simeq f(\delta) + \delta f'(z) \Big|_{z=\delta} \simeq f_0 + 2\delta f_1 + \delta^2 f_2.$$

In general

(3)
$$f(n\delta) \simeq \sum_{m=0}^{n} a_{n,m} f_m \delta^m.$$

It is easily verified that $a_{n,m} = a_{n-1,m} + a_{n-1,m-1}$ and hence that $a_{n,m}$ is the binomial coefficient $C_{n,m}$. If we now define the following:

(4)
$$\sigma_n(z) = \sum_{m=0}^n f_m C_{n,m} \left(\frac{z}{n}\right)^m$$

and if $n\delta = z$, then (3) is equivalent to

(5)
$$f(z) \simeq \sigma_n(z).$$

The question now presents itself: for what values of z does the sequence of polynomials $\sigma_n(z)$ converge to the function f(z)? It is evident that if z is inside the circle of convergence of the series (1), then

Received by the editors February 17, 1948.

¹ The authors are indebted to Prof. R. Salem for help and advice.

we may say directly

(6)
$$\lim_{n \to \infty} \sigma_n(z) = \lim_{n \to \infty} \sum_{m=0}^n f_m C_{n,m} \left(\frac{z}{n}\right)^m$$
$$= \lim_{n \to \infty} \sum_{m=0}^n \frac{f_m z^m}{m!} \frac{n!}{(n-m)! n^m}$$
$$= \sum_{m=0}^\infty \frac{f_m z^m}{m!} = f(z).$$

However, this is not the complete answer.

It was shown by Borel² that we can without loss of generality restrict ourselves to the special case f(z) = 1/(1-z). Here

(7)
$$f_n = n!,$$
$$\sigma_n(z) = \sum_{m=0}^n \frac{n!}{(n-m)!} \left(\frac{z}{n}\right)^m.$$

Obviously if |z| < 1

(8)
$$\lim_{n\to\infty}\sigma_n(z) = \sum_{m=0}^{\infty} z^m = \frac{1}{1-z}$$

and the convergence is uniform if $|z| \leq 1-\epsilon$. It will be deduced later that the same is true if $|z| \leq 1$ except for a neighborhood of the point z=1. Hence we shall confine ourselves to values of z such that |z| > 1. From (7)

(9)
$$\sigma_{n}(z) = \sum_{m=0}^{n} \frac{n!}{(n-m)!} \left(\frac{z}{n}\right)^{m}$$
$$= n! \left(\frac{z}{n}\right)^{n} \sum_{p=0}^{n} \frac{1}{p!} \left(\frac{n}{z}\right)^{p}$$
$$= n! \left(\frac{z}{n}\right)^{n} e^{n/z} - \sum_{p=n+1}^{\infty} \frac{n!}{p!} \left(\frac{n}{z}\right)^{p-n},$$
$$\sigma_{n}(z) = n! \left(\frac{z}{n}\right)^{n} e^{n/z} - \sum_{r=1}^{\infty} z^{-r} \frac{n! n^{r}}{(n+r)!}.$$

If

$$(10) |z| > 1$$

² Borel, Leçons sur les series divergentes, Paris, 1924, pp. 198 ff.

then

(11)
$$\lim_{n \to \infty} -\sum_{r=1}^{\infty} z^{-r} \frac{n! n^r}{(n+r)!} = -\sum_{r=1}^{\infty} z^{-r} = \frac{1}{1-z}$$

and the convergence is uniform if $|z| \ge 1 + \epsilon$. Using Stirling's formula, we have

(12)
$$\lim_{n\to\infty} n! \left(\frac{z}{n}\right)^n e^{n/z} = \lim_{n\to\infty} (2\pi n)^{1/2} (ze^{-1+1/z})^n.$$

This is zero if

$$(13) |ze^{-1+1/z}| < 1.$$

If we let $z = \rho e^{i\theta}$ then

$$\left| ze^{-1+1/z} \right| = \rho e^{-1+(\cos \theta)/\rho}$$

and (13) is the same as

$$\rho e^{-1+(\cos\theta)/\rho} < 1$$

or

The curve $\cos \theta = \rho(1 - \log \rho)$ and the region S. The region S is bounded by the solid part of the curve.

We shall call the region bounded by the curve $\cos \theta = \rho(1 - \log \rho)$, $\rho \ge 1$, the region S (see figure). In view of (8)-(12) and (14) we see that this is the region in which $\sigma_n(z) \rightarrow 1/(1-z)$ uniformly, except

[February

possibly for a neighborhood of |z| = 1 and a neighborhood of the boundary.

For the purpose of applying Borel's theorems it is also necessary to show that in the region $(1 - \epsilon \le \rho \le 1 + \epsilon, \epsilon' \le \theta \le 2\pi - \epsilon')$, $\sigma_n(z)$ is bounded uniformly in z. This follows for $\rho \le 1$ from (7), by an application of Abel's transformation to the series $\sum_{0}^{\infty} z^n$ with the coefficients (obviously monotonically decreasing) $n!/(n-m)!n^m$. Similarly it follows from (9) for $\rho \ge 1$.

Borel³ now proceeds as follows: suppose we have a system of polynomials $\sigma_n(z) = c_0^{(n)} + c_1^{(n)}z + c_2^{(n)}z^2 + \cdots$ and such that $\sigma_n(z) \rightarrow 1/(1-z)$. Suppose we have also a function f(z) represented by the power series

$$\sum_{n=0}^{\infty} \frac{f_n}{n!} z^n.$$

We may write Cauchy's integral thus:

$$f(z) = \frac{1}{2\pi i} \int_{c} \frac{f(x)}{x} \frac{1}{1 - z/x} dx$$

where c is a contour around z not including any singularities of f(z). Let

$$F_n(z) = \frac{1}{2\pi i} \int_c^{z} \frac{f(x)}{x} \sigma_n\left(\frac{z}{x}\right) dx.$$

Borel showed that

$$F_n(z) = \sum_{k=0}^{\infty} c_k^{(n)} \frac{f_k}{k!} z^k.$$

In case $\sigma_n(z) \rightarrow 1/(1-z)$ uniformly in a certain star-shaped region including the circle of convergence of $\sum_{0}^{\infty} z^n$ Borel deduces by appropriate choice of the contour *c* a region in which $F_n(z) \rightarrow f(z)$ which we describe as follows:

Construct for each singularity ζ of f(z) a region $R(\zeta)$ similar to that in which $\sigma_n(z)$ converges to 1/(1-z), such that the point corresponding to the origin is at the origin and the point corresponding to z=1 is at the singularity ζ . Let $R = \prod_{\zeta} R(\zeta)$ be the region common to all the $R(\zeta)$. In any finite region R' interior to R

$$F_n(z) \to f(z)$$

and the convergence is uniform if it is uniform in the special case

196

⁸ Borel, loc. cit. We have changed the notation to agree with our own.

 $f(z) = 1/(1-z), F_n(z) = \sigma_n(z).$

In our case, $c_k^{(n)} = n!/(n-k)!n^k$, $\sigma_n(z) \to 1/(1-z)$ uniformly in any subregion of S interior to S except in a region as small as we please where $|\sigma_n(z) - 1/(1-z)|$ is uniformly bounded. The reader may convince himself that this restriction does not alter Borel's results.

If in the identity (9) we replace z by 1/z we can derive a more powerful method of continuation. It is not, however, as powerful as those of Borel, Mittag-Leffler, and others, and hence we shall not discuss it.

United Aircraft Corporation, New College, Oxford University, and Massachusetts Institute of Technology