
THE SOLUTION OF LINEAR INTEGRAL EQUATIONS 
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THEODORE G. OSTROM 

1. Introduction. In this paper, we obtain expressions for the solu
tion, resolvent kernel, and Fredholm determinant of the integral 
equation 

*(*) = x(i) + f K(t, s)x(s)ds 
J o 

in terms of Wiener integrals. Besides appealing to the general interest 
which is always inherent in the relating of two apparently diverse 
fields, these results are of possible importance in two ways: (a) 
Though the Wiener integrals involved can be evaluated at present 
only when the kernel takes on certain relatively simple forms, it may 
be possible in the future to obtain at least approximate evaluations 
which will in turn offer approximate solutions of the integral equation 
which may converge faster than the Fredholm solution. Here we 
might mention specifically the case where the integral equation con
tains a parameter of large absolute value ; (b) As a means of evaluat
ing Wiener integrals in terms of the known (Fredholm) solution of the 
integral equation. 

The Wiener integral is based on a measure defined by Wiener [ l ] 1 

on the space C of all real functions x{t) continuous on the interval 
O ^ / ^ l and vanishing at t = 0. Cameron and Martin have investi
gated its properties and have, in particular, discovered how it trans
forms under translations [2] and linear transformations [3]. They 
have also been able to express the solution of a class of nonlinear 
integral equations in terms of limits of Wiener integrals [4]. We shall 
obtain our results by using their theorems on translations and linear 
transformations. 

2. The basic solution. Given the integral equation 

(2.1) z(t)=F[x\t], 

where 

(2.2) F[x\ t] = x(t) + f K(t, s)x(s)ds, 
J o 
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1 Numbers in brackets refer to the references cited at the end of the paper. 
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suppose that the following conditions are satisfied : 
1. s(0 G C and z'(t) exists and is of bounded variation on the in

terval (0, 1). 

m, s) = 
(Kxfa s), 
\K2(tts)f 

0 ^ / < s, 

s < t S 1, 

where Kx{t, s) is continuous, {O^t^s, 0 ^ s ^ 1} ; K(0, s) = 0, 0 ^ s g 1, 
and -K2(^ 5) is continuous, {O^s^t, O^t^l}. 

3. i£(/, 5) is absolutely continuous in / for almost all s, O ^ s ^ l , 
after the jump at / = s is removed by the addition of a step function. 

4. For almost all s, dK(t, s)/dt is essentially of bounded variation — 
that is, there exists a measurable function K*(t, s) which is of bounded 
variation in / for each 5 and which for almost all (/, s) { O ^ / ^ l , 
O^sS 1} is equal to dK(t, s)/dt. 

5. K*(t, s) can be so chosen that 

ƒ. 

ƒ. 

Kt (t, s) I ds < 00, 

var [K*(t,s)]ds < 00. 
0 o^«^i 

J(s) = iT2(s, s)—Ki(s, s) is of bounded variation 

7.^=1+1:-f ••• f 
jKfai, Jl) • • • ^(*M> *M) 

dsi dSnyéO. 

We shall show in this section that under the above conditions our 
integral equation can be solved in terms of Wiener integrals. The 
explicit form of the solution is given in the following theorem: 

THEOREM I. Let z(t) and K(t, s) satisfy conditions 1-7 above. Then 
the solution of the equation (2.1) with F[x\t] defined by (2.2) is given 
by the formula: 

(2.3) 

x(t) = \D\ e x p ( - f [z'(s)]*ds\ 

f u(t)exp(2 f z'(s)dF[u\s] - $(u))d„u; 

where 
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* ( * ) = ƒ [ - ƒ Kfas)u(s)ds^d£ 
(2.4) 

+ 2 

PROOF. 2 Under the conditions of Theorem I, the equation (2.1) 
determines a 1-1 mapping of C into itself. Hence for each z{t) in C 
there is a unique solution x{t) belonging to C which can be written as 

(2.5) x{t) =G[z\t]. 

Thus 

(2.6) G[F(x\ -)\t]^ %{t). 

Moreover, it is apparent that, if, in (2.1) and (2.2), G£y|/] is the cor
responding solution when z{t) is replaced by y{t), then aG[s|2] 
+ôG[^ | / ] is the solution when z{t) is replaced by az{t)+by{t), where 
a and 6 are constants. That is, G[as+&;y|/] =aG[s|^]+&G[y|^]. Then, 
since G is odd, 

ƒ." G[y\t]dwy = 0 

and since f?dwy = 1, we have 

(2.7) f G[z + y\t]dmy=G[z\t]. 

Next we quote a theorem of Cameron and Martin [2]: 
Let Xo(t) be a given continuous f unction vanishing at t = 0 and having 

a derivative xi (t) of bounded variation, O g / ^ 1 . Then if H[y] is any 
functional for which either member of (2.8) {below) exists, the other 
member also exists and the equation (2.8) holds: 

(2.8) 

i H[y]dwy = expf — I [#o'(s)]2dsJ 

I H[x + Xo] exp f — 2 I XQ {s)dx{s) J dwx. 

In (2.8), letH\y]=G[z+y]andletx0- - s , noting that, from (2.7), 
we know that f%G[z+y]dwy exists and by condition 1 of the hy-

2 At the suggestion of the referee, the form of the first part of this argument has 
been modified slightly, so that reference to the Fredholm resolvent kernel could be 
postponed to a later stage of the paper. 
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potheses, Z{t) satisfies the conditions placed on x0(t). (2.8) becomes: 

ƒ G[z + y]dwy 

= e x p f - f [z'(s)]2ds\ f G [ * ] e x p ( 2 f z'(s)dx(s))dwx. 

Applying (2.7) and changing the variable of integration on the right 
to y so that confusion with x{t) in (2.2) may be avoided, we get 

G[z\t] = fWG[(z+y)\t]dwy 

(2.9) = e x p ( - J ' [z'(s)]*ds^ ƒ WG[y\ t] 

•exp f 2 I z'(s)dy(s) Jdwy. 

Next we shall consider the transformation 

y(t) = u(t) + j K(t, s)u(s)ds =F[u\ t]. 
J o 

By another theorem of Cameron and Martin [3], if K satisfies hy
potheses 2-7, and if H[y] is any measurable functional for which 
either member of (2.10) (below) exists, then the other member exists 
and the equality holds : 

(2.10) f"BMd'y ~ I D | ƒ.""[• +ƒ>•.<>««*] 

•exp (— $(u))dwu, 

where $(u) is defined in (2.4). 
Now in (2.10), let H\y]=*G\y] exp (2f1

0z
f(s)dy(s)) since from (2.9) 

we know that Jf G[y] exp (2/o z'(s)dy(s))dwy exists and since Wiener 
integrability implies measurability, this value of H[y] is a measur
able functional. We obtain 

ƒ UG[y] exp ( 2 ƒ *{s)dy(s?)dwy 

= I D\ f " G [ F ( « | •)] exp(2 f z'(s)dF[u\s] - $(«))<*„«, 

which reduces, on applying (2.6), to 
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f G [ y | / ] e x p ( 2 f z'(s)dy(s))dwy 

(2.11) Jc \J° \ 

= | D | f u(t) exp f 2 f z'(s)</F[w | s] - ${u)\dwu. 

Putting together (2.9) and (2.11), we get 

G[z\ t] = | D\ e x p ( - f [z'(s)]2ds) f u(t) 

•exp ( 2 f z'(s)dF[u\ s] - $(w) Jtfww. 

But, by (2.5), x(t) = G[z\t] is the solution of (2.1) and our theorem is 
proved. 

3. Reduction to linear form. This solution can be put into a form 
in which the Wiener integrals are simpler, although the solution is a 
more complicated function of the integrals. The process, particularly 
as regards justification of some of the steps, is somewhat laborious 
hence we shall only summarize the argument. 

If, in (2.1), z{t) be replaced by AJS(/), the solution x(t) will be re
placed by \x(t). Hence 

(3.1) 

\x(t) = \D\ exp ( - X2 f [z'(s)]*ds\ f u (t) 

•exp dwu. 

I t can be shown that differentiation under the Wiener integral sign 
is justifiable provided that z"(s) is continuous. If we assume z"(s) 
continuous, and differentiate both sides of (3.1) with respect to X, 

x(t) — | JE> | exp ( - X 2 f [z'(s) ]*ds\ i - 2X f [*'(*) ]*ds\ 

• f w(*)exp(2X| z'(s)dF[u\ s] - $(u))dwu 

2 ) 1 w 

+ \D\ e x p ( - X 2 f [z'(s)]*ds>\fWu(t) 

• exp ( 2X f z'(s)dF [u\s]-~ $(«) j | 2 f z'(s)dF(u j 5)1 <*„«. 
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Now (3.2) is an identity in X which holds in particular when X = 0, 
hence 

(3.3) x(t) = 2 | D | f u{t) f z'(s)dF{u \ s) exp ( - §{u))dwu. 

Now F[u\s]~u(s)+foK(s, %)u(£)d$;y so that we obtain by substitu
tion in (3.3) 

x(t) = 2 | D | f «(*) f s'(s)du(s) exp ( - $(u))dwu 

(3.4) 

* o 

•exp (— ${u))dwii. 

Substituting Jlz'{s)du{s) = z'(i)u(l)-flu(s)d[z'(s)] and 

d f K(s, C)u(£)dH/ds = f cl-ffO, Q/dsu(S)di + J(s)u(s), 
J 0 •/ 0 

we get 

*(*) = 2 | Z ) | f «(/) <«( l )s ' ( l ) - f w(s)<fe'(s)l 

•exp (— <&(u))dwu 

(3.5) + 2 | Z>| f "*(*){ f *'(*)[ f — — «(Örffl^l 

•exp (— $(u))dwu 

+ 2\D\ f u(t)< f z'{s)J{s)u{s)ds\ exp(-$(u))dwu. 

Interchanging the order of Wiener integration and ordinary integra
tion (which can be justified by the mixed Fubini theorem), we obtain 

x(t) = 2 | D | <s'(l) f u(t)u(l) exp ( - $)dwu 

ƒ
* 1 /Tl 10 

I u(t)u(s) exp (~$)dwudzf(s) 
0 •/ c 

(3.6) + 1 z'(s)\ I - I u(t)u(Ç) exp (-$)dwud% Ids 

+ I z'(s)J(s) I u(t)u(s) exp (— <É>)iu,w <fa > 
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= 2 | D\ {z'(l)W(t} 1) - ƒ ' W{t9 s)d[z'(s)] 

(3.6) + ƒ * z'(s) [ ƒ * * ~ ~ W(t, 0 # ] ds 

+ ƒ z'(s)J(s)W(t,s)ds\, 

where W(tf s) =f™u(t)u(s)/exp ( — $(u))dwu and z"(s) is continuous. 
It will be shown later that W(t, s) is continuous in s, hence this 
may be written (since W(t, 0) = 0) 

x(t) = 2\D\ J ƒ z'(s)d8[W(t,s)] 

(3.7) + ƒ * *'(*) [ ƒ * ̂ ~ — W(t, Qd^ ds 

+ f z'(s)J(s)W(t,s)ds\. 

4. Expression of D and the Fredholm resolvent kernel in terms of 
Wiener integrals. 

THEOREM II. If, in addition to satisfying the conditions of Theorem I, 
K\(t, s) and K%{t, s) have continuous partial second derivatives with re
spect to t, then 

*(*, , s) = — 2< I exp (— $(u))dwu> | 
1 'd2W(t, s) 

ƒ K(s, QW(t, Qdi} 

. ds2 

(4.1) 
v d2 s*1 

+ ~ 
ds- u o 

for all s} t except s~t, where 

u{t)u{s) exp (— ${u))dwu 

and R(t, s) is the resolvent kernel 

PROOF. Equation (3.6) holds if z"(s) is continuous; let us restrict 
z(s) still further, so that *'(())= 0. Then 

,'(1) = f1z-(s)ds. 
J o 

Moreover, we can write 
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f W(t, s)dz'(s) = f W(t, s)z"(s)ds, 
J o J o 

I s'(*) <fo = I z(s) ds + I z'(s) 
J o ds J o ds J * o os •/ $ ' ds 

= tf (1, £K(1) - f * JT(5, £)z"(s)ds - JU)z'(0 
J 0 

(integrating each integral by parts and then recombining into a single 
integral). Hence 

= I" ƒ K(l, QW(t, &dî\ ƒ z"(s)ds 

- ƒ V(*) [ ƒ ' *(*, sw*, Ö#] <** - ƒ * w(t, QJitwwi. 

Thus, (3.6) can be written 

x{t) = 2 | D | ƒ *"(s) V a 1) - W(t, s) 

(4.2) 

+ ƒ [K(l, © - *(*, J) M/ , {)#} <fc. 

But also, under the conditions of Theorem I, we have, by ordinary 
Fredholm theory, 

x{t) = z{t) + f R(t, s)z(s)ds. 
Jo 

Now z(t)=flzf(s)y(tt s)ds, where 

, , ƒ1, O^sèt, 
y(t, s) = < 

Integrating by parts and noting that the indefinite integral of y(t, s) 
with respect to 5 is 

mm (/, s) = <[ 

we obtain z{t)=tjl z"(s)ds—Jl z"(s) min (/, s)ds. Finally, let 
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R1(t, *) = f * R(t, Ç)dl;, R2(t, s)= f' R1(t, &dt; 
J o J o 

then /J i?(/, s)z(s)ds = Ri(t, l)s(l) —/J i?i(/, s)s'($)d$. Integrating by 
parts again, and replacing z(l) by 

f s"(s)Js - f ss"(5)<k, 
«/ 0 • ' 0 

we get 

r JR(<, j)2(5)rfj=Rtit, i) r r *"(*)& - r sZ"(s)^i 

- * ,& i) r »"(*)<b + r JR«(*, s)z"(s)ds 
i /O • / 0 

and 

iA * *W = f »"W (' - m i n C *) + *i('. 1)(1 - *) (4.3) Jo 

-Ui(<, 1) + lîi(<, s)}ds 

which gives us, when combined with (4.2), 

2\D\ ƒ z"(s){w(t, l)-W(t,s) 

(4 4) + ƒ„ [X(1' Ö " *(*' Ö ^('' Ö d { } * 
= f z"(s){t - min (*, s) + Rt(t, 1)(1 - s) 

-*»(*, 1)+*,(*, *)}*. 
Transposing, we get 

ƒ *"(*) il | D | TT(<, 1) - 2 11? | W({, s) 

(A + 2 | D | f [£(1, J) - *(*, Ö]TT(/, &dt 
(4.5; Jo 

- * + min (*, 5) - jRi(/, 1)(1 - $) + jR2(*, 1) - R2(t, s)\ ds =0. 

Now (4.5) holds for z(s) any function satisfying the conditions: 
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(a) s(0)=s'(0)=0, 
(b) z(t) continuous, 0 ^ / ^ l , 
(c) z'(t) is of bounded variation on (0, 1), 
(d) z"(t) continuous on (0, 1). 

Condition (d) implies (b) and (c); moreover, given any function 
z"(t), the constants of integration can be so determined that (a) 
will be satisfied. Hence z"(s) can be any continuous function. Next 
let us write (4.5) in the form 

(4.6) f z"(s)<j>(s)ds = 0, 
J o 

that is, 4>(s) represents the expression in brackets in (4.5). We see that 
<t>(s) will be continuous if W(ty s) is a continuous function of 5. But, 
by (2.10), (2.2), (2.5) and (2.6), 

ƒ
• w I /» w 

u(t)u(s) exp ( — $)dwii — -j p I G[v J t]G[v | s]dwv 

-T^-/;[-w+/-
1^e-(ö«] 

Multiplying out and interchanging order of integration, we get 

1 / /% W /» 1 s* W 

W(t, s) = j — r - j J v(t)v(s)dwV + J R(S, f) J » ( 0 » ( Ö d « t ó { 

ƒ• 1 • » W 

0 •/ c 

ƒ 1 /» 1 •» w 

(4.7) ' ^ / ' 
= - y - y i m i n (*, s) + f *(*, Ö min (*, QdÇ 

2 \D \ K Jo 

+ f R(t, O min (s, Qài 
J o 

+ ƒ ƒ *(*, $)*(*, „) min (|, „)#A,1 . 
3 Using here the fact that the solution of (2.1) can be written alternately as 

tfCO^GtzJ/] or &(t)~z(t)-\-flR(tt s)z(s)ds, so that these two expressions are equal. 
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Since R(ty s) is continuous at any point of continuity of K(t, s), the 
right-hand side of (4.7) is continuous Thus W{t, s) and, therefore, 
<t>(s) are continuous on (0, 1). Now z"{s) may, in particular, be any 
of the complete orthonormal sets of polynomials on (0, 1). From (4.6) 
and definition of completeness, <£(s)=0. Therefore 

2 I D\ \w(t, 1) - W(t, s)+ f [K(l, Ö - K(s9 Q]W(t, Qdt\ 

(4.8) l J° j 

- / + min (/, s) - Rx(t, 1)(1 - s) 
+ R2(t, 1) - R2(t, s) s 0. 

Now for every tj*s we note that each term in (4.8) has a derivative 
with respect to s except possibly W(t, s); hence dW(t, s)/ds exists. 
Differentiating, we get 

. . (dw(t,s) d r1 ) 

K ds dsJo ) 

+ R&, 1) - R&, s) s 0. 

Differentiating again, we get 

. . (d2W(t,s) d2 r1 ) 
(4.9) - 2 I D I j ^2 + — J o K{s, QW(f, ©#J - R(t, s) = 0. 

As in the previous step, we infer the existence of d2W(t, s)/ds2 from 
the existence of the derivatives of all other terms in the identity. 

Finally, we can express D in terms of Wiener integrals. If, in (2.10), 
we set H\y]zzl, then 

1 

Hence 

/

to 

exp (—$(u))d„u. 

\D\= < I exp (—$(u))dwu> 

Theorem II then follows directly from (4.9). 
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