
NOTE ON REGIONS OMITTED BY UNIVALENT FUNCTIONS 

A. W. GOODMAN 

1. Introduction. Let g denote the set of functions 

a) »=ƒ(*> = è <w, i« i i - i , 

which are regular and univalent in Ê, the open unit circle. A classic 
result due to Koebe1 states that if ƒ(z) £ % omits v for z in Er then 
| H è l / 4 , and that equality occurs (essentially)2 only for the func
tion 

(2) * ( , ) - _ ! _ . 
(1 + z)2 

Hence the problem for a single omitted value is completely solved. 
It is natural to inquire into the situation when the set of omitted 

values contains a region or a number of regions. This can be special
ized in two ways. In §2 it is assumed that f(z) omits all the values 
inside a circle of radius R, and a sharp upper bound for R is obtained. 
In §3 the area of the intersection of E and the set of omitted values 
is considered. The result obtained is not sharp. 

2. The largest circle of omitted values. We shall make use of the 
following theorem due to Pick3 and Nevanlinna,4 and since a short 
proof can be given, it is included here for completeness. 

THEOREM 1. Let h(z)Q% omit y in E. Further suppose that \h(z)\ 
<M for z in E. Then 

(3) | 7 | à 2M2 - M - 2M(M2 - M)^2, 

with equality (essentially) only for the function 

(4) A(«) = #*[!*(*)] 

Received by the editors January 24, 1948, and, in revised form, April 14, 1948, 
1 Titchmarsh, The theory of functions, Oxford University Press, p. 211. 
2 We use "(essentially)" to denote that all other functions for which the equality 

sign holds can be obtained from the one given by subjecting both planes to appro
priate rotations. 

3 G. Pick, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vienna, 
Abteilung lia, vol. 126 (1917) pp. 247-263. 

4 R. Nevanlinna, Oversigt a Finska Vetenskaps Societetens Forhandlinger vol. 62 
(1919). 
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where K(z) denotes the inverse function of k(z). 

PROOF. Without loss of generality take Y > 0 . Clearly 

*(«) 
(5) ƒ(*) = 

(i + h(z)/My 
is in % and omits the positive value 

y 
(6) v = -

(1 + y/M)* 
Apply Koebe's Theorem. Since, for fixed M, (6) is an increasing func-

Fig. 1 

tion of y in the interval O^y^M, the inequality v^l/i implies 
7â7<:, the least positive root obtained by solving 

(7) 
(1+y/M)* 

1 

T 
This yields for yc exactly the right side of (3). Since k(z) is (essen

tially) the only function for which j/ = 1/4, it is easy to see that (4) is 
(essentially) the only function for which the equality sign holds in 
(3). The function given by (4) maps E onto a circle of radius M with 
a slit along the positive real axis from M to y. 

THEOREM 2. Letf{z)Ç:^} Let c be fixed and suppose that for z in E, 
f{z) omits all % for which 

(8) \S-c\£R. 

Then 
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4 | c | - 1 
(9) RS 

4|c | + l 

with equality (essentially) only for the function which maps E onto the 
entire complex plane except for the closed circle of prescribed center and 
radius, and a radial slit running from the point c+(c/\c\)R to the 
point at infinity (see Fig. 1). 

PROOF. Without loss of generality take ƒ'(()) = 1 and c>0. Since 
/(0) = 0, c-R>0. Let 

(10) g(z) = — — 

Then for z in E, g(z) is regular, univalent, \g(z)\ < 1 , and g(z)9£0. 
Also g(0) = -R/c, and g'(0) =R/cz. Next set 

. , , (c* - R2)(g(z) ~ g(0)) 
(11) h(z) = • 

) R(l-g(z)g(0)) 
Then h(z) satisfies the conditions of Theorem 1 with 

(12) M = (e* - R*)/R, y = (c* - R*)/c > 0. 

We write (3) in the form 

(13) 2M(M2 - M)1'2 à 2M2 - (If + 7). 

Now M>\ and ikf>7 show that the right side of (13) is positive, 
and so we may square both sides and obtain 

(14) 4M2<y è (M + y)\ 

Using (12) in (14) and simplifying, one finds 

(15) 4c(c -R)^R + c, 

and this is equivalent to (9). 
To see that the inequality is sharp and to obtain the (essentially) 

unique function, reverse the steps of the proof. Take h (z) as given 
by (4) with M determined by (12) and R determined by (9) with the 
equality sign. Then (11) together with the requirement that g(0) 
= — R/c gives g(z). Finally (10) defines f(z)> and it is not difficult to 
verify that the f(z) so obtained has all of the required properties. 

THEOREM 3. Let A(s)GS omit y in E. Further suppose that in E, 
$t(h(z))>~-c, c>0. Then 

\y\%c- ( 4 c * - 2c)1'2/2 
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with equality only in the case h(z) maps E onto the half-plane 9t(co) > — c, 
slit along the real axis from — c to — c+(4c2 — 2c)l/2/2. 

The proof of this theorem is similar to that of Theorem 2, and will 
be omitted. 

3. The area question. Instead of the point set mentioned in §1, 
it will be more convenient and completely equivalent to consider the 
set Sf, the intersection of E and the set of values assumed by f{z) 
for z in E. Let Af be the area of this set and let A denote the greatest 
lower bound of {A/} for ƒ (z) £ §. Roughly speaking, A measures the 
amount of the unit circle which must always remain covered by the 
map of E under any normalized univalent function. We shall prove 
the following theorem. 

THEOREM 4. 

(16) .50007T g A < .7728TT. 

In establishing the lower bound use will be made of the rather ele
mentary lemma: 

LEMMA 1. Let k>0. Let <t>{0) be a positive continuous function f or 
0 ^ 0 ^ 2 T T , and 

(17) 

Then 

(18) 

with equality if and 

ƒ <t>(d)dO 

r2* dd 

J o <t>k(e) ~ 
only if<l>(9) = £ / 2 T T . 

S c 

( 2 T T ) * + 1 

The Holder inequality for integrals5 states that if a, |8, ƒ(#), g(x) 
are positive and a+/3 = l, then 

/

2T f r% 2v "lar C 2 x "T8 

/ W W ^ [J fWoj M g(e)dej . 
Take« = 1/ife + l, p = k/k+l, g(9) =0(0), f(0) = O ^ ) ) - " ' " ^ - * ^ ) . and 
obtain 

r r2* de -|*/<*+i> 
(20) 2ir = I c*/(*+i). 

6 Hardy, Littlewood, and Pôlya, Inequalities, Cambridge University Press, p . 140. 
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This gives (18). Since equality occurs in (19) only when ƒ (0) and g(0) 
are proportional, equality occurs in (20) only if <f>(d) is constant. 

To establish the lower bound for A consider, not f(z), but f(rz)/r 
—fr(z), 0 < r < l . This insures the regularity oîfr(z) on the boundary 
of E. To simplify matters, assume that the boundary of S/r is given 

Fig. 2 

by R=(j)r(d)1 a continuous single-valued function for O^0^27r. Then 

(21) Afr~—( \l{B)dd. 
2 J o 

Hence the set of points omitted by l/fr(z), which lie outside the unit 
circle, has area 

1 r2v dB 
(22) Q = — I 7T. 

2 J o <t>l(6) 
But by the Faber-Bieberbach6 area theorem Q^TT and so 

(23) I -T— g 4TT. 
J o 02

r(0) 
By Lemma 1, with k = l 

** « (2TT) 2 

<l>r(o)de à 
0 Aw 

It is easy to remove the restriction that $r(0) be single-valued and 
continuous. The details will be omitted, but it should be noted that 

6 Titchmarsh, loc. cit. page 209. 
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for the functions fr(z) each ray through the origin intersects the 
boundary of S/r in at most a finite number of points. Finally taking 
the limit as r—>1 presents no difficulties. 

To establish the upper bound we construct, by combining the five 
simple functions (25), a function w=f(z) which maps E onto the 
shaded region shown in Fig. 2. 

rj = K[ck(z)l 0 < c < 1, 

(25) 

for; + 1 

1 + tf 

- 1 < f 0 < 0 , 

v = u2-"!*, 0 ^ a < T, 

W = , 0 < 0 < 7T. 

The first mapping takes E into E with a slit with length depending 
on the parameter c. The second preserves E and introduces a param
eter f o which is later determined by the condition ƒ (0) = 0. The 
third mapping takes E into the right half-plane, and the fourth takes 
this half-plane into the entire plane except for a wedge of angular 
aperture a symmetrically located about the negative real axis with 
apex a t the origin. The slit in E becomes a circular arc slit of unit 
radius and one end on the upper boundary of the wedge. Finally the 
fifth mapping takes this region onto the shaded region of Fig. 2. 

The constant c is determined by requiring that the slit end go into 
the point a t infinity. Using subscripts to denote the images of the 
points in the w-plane it is easy to verify the following. 

— 7T / a \ 

27T-<A 2 / 

(26) 

sin ^o sin \p* 
f 0 = - — "— > f oo = 

1 + cos ^o 1 + cos ôo 

sin ( (* , - *o)/2) Auf . 

cos ((*„ + *„)/2) 



1949] REGIONS OMITTED BY UNIVALENT FUNCTIONS 369 

This gives the two parameters c and f0 as functions of a and /S. 
Finally 

(27) I ƒ (0) I = T 7 ! 4*01.) cos *o. 
T sin p 

Setting I/'(0) I = 1 gives a transcendental equation which determines 
a as a function of /3. Fortunately, however, it is not necessary to 
carry the precise analysis any further to secure a valid upper bound 
for A. The particular selection a = 28°, /3 = 90° gives | / ' ( 0 ) | > 1.0015 
and A/<.7728T. 

To place our conclusion on a completely sound basis it must be 
remarked that by a well known lemma7 | / ' (0) | , for fixed /3, is a 
strictly decreasing function of a. Further |jf'(0)| is a continuous 
function of a. So with /3 = 90° there is a unique a' for which | ƒ'(0) | = 1 
and a' >28°. 

RUTGERS UNIVERSITY 

7 If ƒ(2) and g(z) map E onto T7 and G respectively with /(O) =g(0) and F(Z.G, 
t h e n | / ' ( 0 ) | < | g ' ( 0 ) | . 


