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H. S. WALL 

1. Introduction. The principal object of this paper is to establish 
the following theorem. 

THEOREM A. Let c\, ci, £3, • • • be a sequence of complex numbers 
such that, for p = l, 2, 3, • • • , 

(1.1) \cp\ - R(cpe
i<+*++**'>) ^ 2r cos <j>p cos 0p+i(l - gP-i)gP, 

where r, <j>u 02, 03, * * • , go, gi, £2, • • * are real numbers satisfying the 
inequalities 

0 < r < 1, - T/2 + c ^ c/>p ^ + w/2 - c (0 < c < TT/2), 

0£gp-i£ 1, p= 1 ,2,3, . . . , 

c and r being independent of p. The continued fraction 

(1.3) = K^— ( c o - 1 ) 

1+ Ci 

1 + 

converges if, and only if, (a) some cp vanishes, or (b) cp9^0, 
p = l, 2, 3, • • • , and the series "%2\dP\ diverges, where 

1 
(1.4) di=l, dp+1 = —-, p = l,2,3,---. 

Cp(tp 

We note the following particular cases of Theorem A. 
(a) The continued fraction 

00 1 1 °° cp-i e-i^p+^p+i) 
K , = j£ ; Co = 1, Cp = ; 
p-i kpe

%+* kxe**1
 p=1 1 kpkp+i 

in which kp>0, —ir/2-\-cS<l>I>S+Tr/2—c, 0<c<7r/2, converges if, 
and only if, the series ^kp diverges (Stieltjes [ó] (0p = 0) ; E. B. Van 
Vleck [8]).1 For an extension of this theorem in a direction different 
from Theorem A, see Scott and Wall [5]. 
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(b) If 

\cp\- R(cpe
2i*) g 2-V cos2 4>, p = 1, 2, 3, • • • , 

where 0 < r < l , —T/2<<J>< +7r/2, then the continued fraction (1.3) 
converges if, and only if, (a) some cp vanishes, or (b) Cp-^0, 
p=l, 2, 3, • • • , and the series ]T)|dP\, defined by (1.4), diverges 
(Paydon and Wall [3]). The case 0 = 0 of this theorem holds with 
r = l (Scott and Wall [4]). 

(c) Inasmuch as 

1 < \dv 1 + 1 dP+i 1 
( k l ) 1 / 2 = 2 

it follows from Theorem A that a sufficient condition for convergence 
of the continued fraction (1.3), satisfying (1.1) and (1.2), is the di
vergence of the series 

Z ( l / ( k | ) 1 / 2 ) (Wall and Wetzel [7]). This 
sufficient condition is not necessary, as is shown by the example 
dilh-i=*l, d2p = sp, 0<s < 1 . 

2. Preliminary theorem. Let xp= Xp(z) and xp= Yp(z) be the solu
tions of the system of equations 
(2.1) — ap_i#p_i + (bp + zp)xp — apxp+i = 0, p = 1, 2, 3, • • • , 

under the initial conditions Xo = — 1, #i = 0 and #o = 0, #i = l, respec
tively. We suppose that ao = l, #i> #2, #3, • • • are constants not zero, 
&i, &2, 63, • • • are constants, and 21, 22, 23, • • • are parameters. The 
theorem of invariability [2, 5] states that if the series 

(2.2) E I *,(*) I2. E I ^ W l ' 
converge for zp — hp> p = l, 2, 3, • • • , then they converge uniformly 
for |sp —&p| ^M, for every finite constant M independent of p. The 
determinate case is said to hold for the continued fraction 

(2.3) - X — 
p = l Op ~j~ Zp 

if at least one of the series (2.2) diverges for zp = 0y p = l, 2, 3, • • • . 
In the contrary event, the indeterminate case is said to hold. 

THEOREM 2.1. If \bp\ ^M, p = l, 2, 3, • • • , where M is a finite 
constant independent of p, then the determinate case holds for the con
tinued fraction (2.3) if, and only if, the series X ) | ^ / | diverges, where 

(2.4) di = 1, dp+i = -Ty-> P = 1» 2, 3, • • • . 
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PROOF. From the condition imposed upon bp, and the theorem of 
invariability, it follows immediately that the determinate case holds 
if, and only if, a t least one of the series (2.2) diverges for zp — — bpi 

£ = 1,2,3, • • • .On putting these values of the zp in (2.1) we find that 
I X*p(z) 12, I Y2P(z) 12, I X2p+i(z) 12 and | Y2p+i(z) | 2 take on the values 
|^2p| > 0, 0, and J df

2p+1 | , respectively. Therefore, the determinate case 
holds if, and only if, the series X) I ^p I *s divergent. 

It is easy to see that when we drop the condition that the \bp\ be 
bounded, then the determinate case may hold when the series 221 dp' I 
converges. I t seems likely, however, that the divergence of the series 
X I dp I implies the determinate case whether or not the | bp \ are 
bounded. 

3. Proof of Theorem A. Let S>0 be chosen sufficiently small in 
order that 

r j 1 + Ô sec( — - c\\ S 1. 

Determine numbers a2
p by means of the equations 

cp = ; p = 1, 2, 3, • • • . 
(1 + 8 sec <f>p)(l + ô sec <£p+i) 

Let the partial numerators a2
v in (2.3) have these values, and there 

take 
zp = id, bp + Zp = ie**p(l + ô sec <t>p). 

Then that continued fraction and (1.3) are equivalent, except for an 
unessential factor. Moreover, by (1.1), 

I 4 I - R(ap) ^ 2/3^j,+i(l - gp-i)gP, p = 1, 2, 3, . . . , 

where (3P = I(bp) = cos 0 P >O. Thus, the continued fraction (2.3) is 
positive definite [7, 1 ]. Since I(zp) = 5 > 0 , it follows that the continued 
fraction (2.3) converges if (a) some ap vanishes, that is, some cp 

vanishes, or (b) a ^ O , £ = 1, 2, 3, • • • , and the determinate case 
holds. Since the \bp\ are bounded, it follows from Theorem 2.1 that 
the determinate case holds if the series YL\dP' \ defined by (2.4) di
verges. We note that this series diverges if, and only if, the series 
231 dp\ defined by (1.4) diverges. Therefore, the continued fraction 
(1.3) converges if (a) some cp vanishes, or (b) c p ^ 0 , p— 1, 2, 3, • • • , 
and the series ]C |dp | , defined by (1.4), diverges, If, on the other 
hand, this series converges, then the continued fraction diverges by 
virtue of a theorem of von Koch. 
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THE UNIVERSITY OF TEXAS 

REMARKS ON THE NOTION OF RECURRENCE 

J. WOLFOWITZ 

We give in several lines a simple proof of Poincaré's recurrence 
theorem. 

THEOREM. Let Q, be a point set of finite Lebesgue measure, and T a 
one-to-one measure-preserving transformation of fl into itself.1 Let 
B(ZAC.ti> be measurable sets such that, if bÇ^B, TnbÇ£A for all positive 
integral n. Then the measure m(B) of B is 0. 

PROOF. First we show that, if i <j, {TlB){T^B) = 0. Suppose c£TŒ; 
then from the hypothesis on B it follows that j is the smallest integer 
such that T~3'cEA. Hence c(£T*B. Now if m(B) = 5>0 , O would con
tain infinitely many disjunct sets TnB, each of measure 5. This con
tradiction proves the theorem. 

The following generalization of the above theorem is trivially 
obvious: The result holds if we replace the hypothesis that T is 
measure-preserving by the following: If m(D) > 0 , lim sup»• m{ Tl(D)} 
> 0 . 

Received by the editors April 3, 1948. 
1 For a discussion in probability language see M. Kac, On the notion of recurrence 

in discrete stochastic processes, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 1002-1010. 


