CONVERGENCE OF CONTINUED FRACTIONS IN PARABOLIC DOMAINS

H. S. WALL

1. Introduction. The principal object of this paper is to establish the following theorem.

Theorem A. Let $c_{1}, c_{2}, c_{3}, \cdots$ be a sequence of complex numbers such that, for $p=1,2,3, \cdots$,
(1.1) $\quad\left|c_{p}\right|-R\left(c_{p} e^{i\left(\phi_{p}+\phi_{p+1}\right)}\right) \leqq 2 r \cos \phi_{p} \cos \phi_{p+1}\left(1-g_{p-1}\right) g_{p}$,
where $r, \phi_{1}, \phi_{2}, \phi_{3}, \cdots, g_{0}, g_{1}, g_{2}, \cdots$ are real numbers satisfying the inequalities

$$
\begin{array}{cr}
0<r<1,-\pi / 2+c \leqq \phi_{p} \leqq+\pi / 2-c & (0<c<\pi / 2), \tag{1.2}\\
0 \leqq g_{p-1} \leqq 1, & p=1,2,3, \cdots
\end{array}
$$

c and r being independent of p. The continued fraction

$$
\begin{equation*}
\frac{1}{1+\frac{c_{1}}{1+\frac{c_{2}}{1+\cdot}}}={\underset{K}{p=1}}_{\infty} \frac{c_{p-1}}{1} \quad\left(c_{0}=1\right) \tag{1.3}
\end{equation*}
$$

converges if, and only if, (a) some c_{p} vanishes, or (b) $c_{p} \neq 0$, $p=1,2,3, \cdots$, and the series $\sum\left|d_{p}\right|$ diverges, where

$$
\begin{equation*}
d_{1}=1, \quad d_{p+1}=\frac{1}{c_{p} d_{p}}, \quad p=1,2,3, \cdots \tag{1.4}
\end{equation*}
$$

We note the following particular cases of Theorem A.
(a) The continued fraction

$$
{\underset{p=1}{\infty}}_{\infty}^{\infty} \frac{1}{k_{p} e^{i \phi_{p}}}=\frac{1}{k_{1} e^{i \phi_{1}}}{ }_{p=1}^{\infty} \frac{c_{p-1}}{1}, \quad c_{0}=1, \quad c_{p}=\frac{e^{-i\left(\phi_{p}+\phi_{p+1}\right)}}{k_{p} k_{p+1}},
$$

in which $k_{p}>0,-\pi / 2+c \leqq \phi_{p} \leqq+\pi / 2-c, 0<c<\pi / 2$, converges if, and only if, the series $\sum k_{p}$ diverges (Stieltjes [6] ($\phi_{p}=\phi$) ; E. B. Van Vleck [8]). ${ }^{1}$ For an extension of this theorem in a direction different from Theorem A, see Scott and Wall [5].

Presented to the Society, September 10, 1948; received by the editors April 8, 1948.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.
(b) If

$$
\left|c_{p}\right|-R\left(c_{p} e^{2 i \phi}\right) \leqq 2^{-1} r \cos ^{2} \phi, \quad p=1,2,3, \cdots
$$

where $0<r<1,-\pi / 2<\phi<+\pi / 2$, then the continued fraction (1.3) converges if, and only if, (a) some c_{p} vanishes, or (b) $c_{p} \neq 0$, $p=1,2,3, \cdots$, and the series $\sum\left|d_{p}\right|$, defined by (1.4), diverges (Paydon and Wall [3]). The case $\phi=0$ of this theorem holds with $r=1$ (Scott and Wall [4]).
(c) Inasmuch as

$$
\frac{1}{\left(\left|c_{p}\right|\right)^{1 / 2}} \leqq \frac{\left|d_{p}\right|+\left|d_{p+1}\right|}{2}
$$

it follows from Theorem A that a sufficient condition for convergence of the continued fraction (1.3), satisfying (1.1) and (1.2), is the divergence of the series $\sum\left(1 /\left(\left|c_{p}\right|\right)^{1 / 2}\right.$) (Wall and Wetzel [7]). This sufficient condition is not necessary, as is shown by the example $d_{2 p-1}=1, d_{2 p}=s^{p}, 0<s<1$.
2. Preliminary theorem. Let $x_{p}=X_{p}(z)$ and $x_{p}=Y_{p}(z)$ be the solutions of the system of equations

$$
\begin{equation*}
-a_{p-1} x_{p-1}+\left(b_{p}+z_{p}\right) x_{p}-a_{p} x_{p+1}=0, \quad p=1,2,3, \cdots \tag{2.1}
\end{equation*}
$$

under the initial conditions $x_{0}=-1, x_{1}=0$ and $x_{0}=0, x_{1}=1$, respectively. We suppose that $a_{0}=1, a_{1}, a_{2}, a_{3}, \cdots$ are constants not zero, $b_{1}, b_{2}, b_{3}, \cdots$ are constants, and $z_{1}, z_{2}, z_{3}, \cdots$ are parameters. The theorem of invariability $[2,5]$ states that if the series

$$
\begin{equation*}
\sum\left|X_{p}(z)\right|^{2}, \quad \sum\left|Y_{p}(z)\right|^{2} \tag{2.2}
\end{equation*}
$$

converge for $z_{p}=h_{p}, p=1,2,3, \cdots$, then they converge uniformly for $\left|z_{p}-h_{p}\right| \leqq M$, for every finite constant M independent of p. The determinate case is said to hold for the continued fraction

$$
\begin{equation*}
-K_{p=1}^{\infty} \frac{-a_{p-1}}{b_{p}+z_{p}} \tag{2.3}
\end{equation*}
$$

if at least one of the series (2.2) diverges for $z_{p}=0, p=1,2,3, \cdots$. In the contrary event, the indeterminate case is said to hold.

Theorem 2.1. If $\left|b_{p}\right| \leqq M, p=1,2,3, \cdots$, where M is a finite constant independent of p, then the determinate case holds for the continued fraction (2.3) if, and only if, the series $\sum\left|d_{p}^{\prime}\right|$ diverges, where

$$
\begin{equation*}
d_{1}^{\prime}=1, \quad d_{p+1}^{\prime}=\frac{1}{a_{p}^{2} d_{p}^{\prime}}, \quad p=1,2,3, \cdots \tag{2.4}
\end{equation*}
$$

Proof. From the condition imposed upon b_{p}, and the theorem of invariability, it follows immediately that the determinate case holds if, and only if, at least one of the series (2.2) diverges for $z_{p}=-b_{p}$, $p=1,2,3, \cdots$. On putting these values of the z_{p} in (2.1) we find that $\left|X_{2 p}(z)\right|^{2},\left|Y_{2 p}(z)\right|^{2},\left|X_{2 p+1}(z)\right|^{2}$ and $\left|Y_{2 p+1}(z)\right|^{2}$ take on the values $\left|d_{2 p}^{\prime}\right|, 0,0$, and $\left|d_{2 p+1}^{\prime}\right|$, respectively. Therefore, the determinate case holds if, and only if, the series $\sum\left|d_{p}^{\prime}\right|$ is divergent.

It is easy to see that when we drop the condition that the $\left|b_{p}\right|$ be bounded, then the determinate case may hold when the series $\sum\left|d_{p}^{\prime}\right|$ converges. It seems likely, however, that the divergence of the series $\sum\left|d_{p}^{\prime}\right|$ implies the determinate case whether or not the $\left|b_{p}\right|$ are bounded.
3. Proof of Theorem A. Let $\delta>0$ be chosen sufficiently small in order that

$$
r\left[1+\delta \sec \left(\frac{\pi}{2}-c\right)\right]^{2} \leqq 1
$$

Determine numbers a_{p}^{2} by means of the equations

$$
c_{p}=\frac{a_{p} e^{-i\left(\phi_{p}+\phi_{p+1}\right)}}{\left(1+\delta \sec \phi_{p}\right)\left(1+\delta \sec \phi_{p+1}\right)}, \quad \quad p=1,2,3, \cdots
$$

Let the partial numerators a_{p}^{2} in (2.3) have these values, and there take

$$
z_{p}=i \delta, \quad b_{p}+z_{p}=i e^{i \phi_{p}}\left(1+\delta \sec \phi_{p}\right)
$$

Then that continued fraction and (1.3) are equivalent, except for an unessential factor. Moreover, by (1.1),

$$
\left|a_{p}^{2}\right|-R\left(a_{p}^{2}\right) \leqq 2 \beta_{p} \beta_{p+1}\left(1-g_{p-1}\right) g_{p}, \quad \quad p=1,2,3, \cdots
$$

where $\beta_{p}=I\left(b_{p}\right)=\cos \phi_{p}>0$. Thus, the continued fraction (2.3) is positive definite $[7,1]$. Since $I\left(z_{p}\right)=\delta>0$, it follows that the continued fraction (2.3) converges if (a) some a_{p} vanishes, that is, some c_{p} vanishes, or (b) $a_{p} \neq 0, p=1,2,3, \cdots$, and the determinate case holds. Since the $\left|b_{p}\right|$ are bounded, it follows from Theorem 2.1 that the determinate case holds if the series $\sum\left|d_{p}^{\prime}\right|$ defined by (2.4) diverges. We note that this series diverges if, and only if, the series $\sum\left|d_{p}\right|$ defined by (1.4) diverges. Therefore, the continued fraction (1.3) converges if (a) some c_{p} vanishes, or (b) $c_{p} \neq 0, p=1,2,3, \cdots$, and the series $\sum\left|d_{p}\right|$, defined by (1.4), diverges, If, on the other hand, this series converges, then the continued fraction diverges by virtue of a theorem of von Koch.

Bibliography

1. J. J. Dennis and H. S. Wall, The limit-circle case for a positive definite J-fraction, Duke Math. J. vol. 12 (1945) pp. 255-273.
2. E. Hellinger and H. S. Wall, Contributions to the analytic theory of continued fractions and infinite matrices, Ann. of Math. (2) vol. 44 (1943) pp. 103-127.
3. J.F. Paydon and H.S. Wall, The continued fraction as a sequence of linear transformations, Duke Math. J. vol. 9 (1942) pp. 360-372.
4. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172.
5. -_, On the convergence and divergence of continued fractions, Amer. J. Math. vol. 69 (1947) pp. 551-561.
6. T. J. Stieltjes, Recherches sur les fractions continues, Oeuvres, vol. 2, pp. 402-566.
7. H. S. Wall and Marion Wetzel, Quadratic forms and convergence regions for continued fractions, Duke Math. J. vol. 11 (1944) pp. 89-102.
8. E. B. Van Vleck, On the convergence of continued fractions with complex elements, Trans. Amer. Math. Soc. vol. 2 (1901) pp. 205-233.

The University of Texas

REMARKS ON THE NOTION OF RECURRENCE

J. WOLFOWITZ

We give in several lines a simple proof of Poincaré's recurrence theorem.

Theorem. Let Ω be a point set of finite Lebesgue measure, and Ta one-to-one measure-preserving transformation of Ω into itself. ${ }^{1}$ Let $B \subset A \subset \Omega$ be measurable sets such that, if $b \in B, T^{n} b \notin A$ for all positive integral n. Then the measure $m(B)$ of B is 0 .

Proof. First we show that, if $i<j,\left(T^{i} B\right)\left(T^{\prime} B\right)=0$. Suppose $c \in T^{j} B$; then from the hypothesis on B it follows that j is the smallest integer such that $T^{-j} c \in A$. Hence $c \notin T^{i} B$. Now if $m(B)=\delta>0, \Omega$ would contain infinitely many disjunct sets $T^{n} B$, each of measure δ. This contradiction proves the theorem.

The following generalization of the above theorem is trivially obvious: The result holds if we replace the hypothesis that T is measure-preserving by the following: If $m(D)>0, \lim _{\sup }^{i}$ $m\left\{T^{i}(D)\right\}$ >0.

[^0]
[^0]: Received by the editors April 3, 1948.
 ${ }^{1}$ For a discussion in probability language see M . Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 1002-1010.

