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A possible attack on the fifth problem of Hilbert is to demonstrate 
the existence of one-parameter subgroups in any locally Euclidean 
group.1 I t is known that, provided there are no "small" subgroups, 
some one-parameter subgroups exist. One would like to prove, how­
ever, that in a suitable neighborhood of the identity, every element 
is on one and only one one-parameter subgroup. If this is true, it is 
possible to extract square roots (that is, solve x2 = a for given a) 
uniquely in this neighborhood, and the sequence of successive square 
roots a, a112, (a1/2)l/2, • • • converges to the identity. Conversely, it is 
easily seen that, if unique square roots exist, and if the sequence of 
square roots converge to the identity, then the one-parameter sub­
groups can be found. In this paper we give a new proof2 that square 
roots exist in a suitable neighborhood of the identity and show, in 
addition, that either they are unique or small subgroups exist. 

Throughout this paper we shall deal only with locally Euclidean 
topological groups of dimension n ; consequently we may speak of an 
w-cell neighborhood of a point p, meaning a homeomorphic image of 
a Euclidean w-simplex containing the point p in its interior. 

The proofs of Theorems 1 and 2 use the group property so sparingly 
that they can easily be restated as theorems on the involutions of a 
manifold. 

THEOREM 1. In a locally Euclidean group there exists a neighborhood 

Received by the editors March 26, 1948. 
1 The arguments outlined here are those of B. von Kerekjarto in his paper Geo­

metrische Theorie der zweigliedrigen kontinuierlichen Gruppen, Abh. Math. Sem. Ham-
burgischen Univ. vol. 8 (1930) pp. 107-114. 

2 Cf. B. de Kerekjarto, Sur l'existence de racines carrées dans les groupes continus, 
C. R. Acad. Sci. Paris vol. 193 (1931) pp. 1384-1385. 



1949] SQUARE ROOTS IN LOCALLY EUCLIDEAN GROUPS 447 

of the identity containing no elements of order two* 

PROOF. Let Cn be an ^-cell neighborhood of the identity, e. We 
can easily construct a sequence, Cn-i, • • • , Co (the subscripts are 
merely indices and do not refer to dimension), of n-cell neighborhoods 
of e such that ClCCk+i (k = 0, 1, • • • , n — 1). We claim that there 
are no elements of order two in Co. 

Suppose, on the contrary, that there is an element a G Co such that 
a^e and a2 = e. We shall construct by induction a singular w-sphere 
in the cell Cn (that is, a continuous function ƒ mapping the unit sphere 
Sn of n+1 dimensional space into the cell Cw) satisfying the relation 

(1) Tof = foA, 

where T is the group translation T(x)=ax, and A is the antipodal 
map of Sn into itself. Sn contains in a natural fashion the sequence of 
spheres S°, 51, • • • , Sn~1

1 Sn, each being the "equator" of the next. 
Define ƒ on 5° by letting e and a be the images of the two points of 5°. 
Evidently (1) holds and / (5° )CCo. Suppose that k<n, and that ƒ 
is defined on Sk and ƒ (Sk) C C&. Since C& is aspherical in all dimensions 
we can extend ƒ over one hemisphere of Sk+1, the image being in C&. 
Then we may use the relation (1) to define ƒ over the other hemisphere 
and, since T(Ck)C.Ck+i9 we shall have ƒ(Sk+l) CC*+i. Thus we obtain 
the desired singular n-sphere. However, the Ulam-Borsuk theorem 
asserts, for any singular ^-sphere in an n-cell, that there is a point x 
for which f(x) =ƒ o A(x). By (1) we have To f(x)=f(x), a contra­
diction since T has no fixed points. 

THEOREM 2. If C is a Euclidean n-cell containing the identityy e} 

then there exists a singular (n — 1) sphere ƒ in C— {e\ such that 

(2) Iof = foA, 

where I is the inversive mapping, I(x) —ocr1. Moreover, if f is any such 
singular (n — l)-sphere, and if CKJC~1C.D, where D is an n-cell con­
taining no elements of order two, then f is an essential singular sphere 
in C— {e}. 

PROOF. We proceed as in Theorem 1, choosing first the w-cells 
Cn-i = C, Cn-2, • • • , Co where each is a neighborhood of the identity 
and Ck^JCk^CCk+iCk^CCk+i. We can define ƒ on S° so that (2) holds 
and ƒ(5°) C Co — {e}. Since the sets C& — {e} are aspherical in the 
dimensions 0, 1, • • • , n — 2 the inductive extension of ƒ can be car-

8 This theorem was first given by M. H. A. Newman, A theorem on periodic trans­
formations of spaces, Quart. J. Math. Oxford Ser. vol. 2 (1931) pp. 1-8. 
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ried through n — 1 steps, using (2) in place of (1), to give the required 
singular (n — l)-sphere. 

Now suppose that the cell D exists and that ƒ is a singular (» — 1)-
sphere in C— {e} satisfying (2). If ƒ is not essential, extend ƒ over a 
hemisphere of Sn and complete the extension over Sn by the relation 
(2). Then e&f(Sn)CE> and, the latter being an w-cell, the Ulam-
Borsuk theorem tells us that, for some x,f(x) =ƒ o A(x). By (2) we 
have f(x) = [f(x) J""1, but D contains no elements of order two and 
f{x)7£e\ we have found a contradiction. 

COROLLARY. The degree of the inversive mapping about the identity 
is ( - l ) n . 

PROOF. With ƒ as in the theorem above we have dlXdf=*d(I of) 
= 3 ( / o A) =dfXdA, and we know that d / ^ 0 . Hence dl^dA = ( - l ) n . 

THEOREM 3, If N is a given neighborhood of the identity, there is a 
neighborhood M of the identity such that every element of M has a square 
root in N. 

PROOF. We can choose w-cell neighborhoods of the identity, B, C, 
and D, such that DQN, D contains no elements of order two, C\JC~X 

C A and B2CZC. By Theorem 2 we can construct a singular (# — 1)-
sphere ƒ in B— [e] satisfying (2). Let Q be the quadratic mapping 
Q(x)=x2. Since l a n d Q permute, IoQof—QoIof—QofoA. 
Hence Qof is a singular (w — l)-sphere in C— {e} satisfying (2). 
Applying the second part of Theorem 2, Q o f is essential in C— {e} 
and this implies that Q is an essential mapping of B — {e} into 
C— {e}. Hence every point of a sufficiently small neighborhood M of 
the identity is the image under Q of some point of B; that is, every 
point of M has a square root in B C.N. 

COROLLARY. The same theorem is true for roots of any order. 

DEFINITION. A topological group is said to have small subgroups 
if every neighborhood of the identity contains a nontrivial subgroup 
(that is, a subgroup with more than one element). 

THEOREM 4. If a locally Euclidean group does not have small sub­
groups, then there are neighborhoods M and N of the identity such that 
every element of M has a unique square root in N. 

PROOF. Let C and N be w-cell neighborhoods of the identity such 
that C contains no nontrivial subgroups, and NN^NCZC. Since 
C— Iht N is compact and contains no elements of order two, its 
image under Q is closed and does not contain e. With the aid of 
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Theorem 3 we can choose a neighborhood M of the identity such 
that MC\Q(C— Int N) is void and such that every element of M has 
at least one square root in N. The construction shows that, if a£:M, 
any square root of a lying in C is actually in N. 

Suppose that # £ i V and yÇiN are distinct square roots of a£ikf. 
It is clear (without using the hypothesis about small subgroups) that x 
and y do not commute, for then z = xy~* would be an element of order 
two. We shall show that all powers of z are in C. Since x2 = y2, 
y-1X'Xy~1=y~1y2y~1 = e, hence z~1=y~lx, and zx = xz~l. Then zmx-zmx 
=xz~mzmx = a; that is, all the elements zmx are square roots of a. We 
shall show by induction that all of these elements are in N. If m>0 
and zm~lxÇ:N, zmx = (&*~1x)yr1xÇ=LNN--1NC.C, hence zmx£N. Then 
z±mÇ^NN~lCC for all m, and we have found a nontrivial subgroup 
entirely contained in C7 a contradiction. 
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