
ON THE EXISTENCE OF THE INVERSE OPERATION 
IN ALTERNATION GROUPOIDS1 

MARLOW SHOLANDER 

Introduction. An Abelian quasigroup S may be defined as a set 
of elements a, 6, c, • • • for which the following postulates hold: 

Postulate I. There is an equivalence relation in 5, denoted by " = " 
—that is, equality of elements is reflexive, symmetric, and transitive. 
There is a binary operation in 5, denoted by # or, when convenient, 
by the notation of multiplication. I t is understood that this implies S 
is closed with respect to #, and that # is uniquely defined in S—that 
is, if a = b and c = dt then ac = bd. 

Postulate II . # is an alternation—that is, if a, bf cf and d are ele­
ments in S, (ab)(cd) — (ac)(bd). 

Postulate I I I . Each element in 5 is proper (see §2 for definitions). 
D. C. Murdoch [l, p. 516]2 pointed out that an Abelian quasigroup 

is a natural generalization of an Abelian group. The same author [2, 
Theorem 11] proved that in an Abelian quasigroup it is always 
possible to define a new operation under which the elements of the 
quasigroup form an Abelian group. R. H. Bruck [3, Theorem 12] 
in a sense completed the theory by showing how all Abelian quasi-
groups rriay be derived from Abelian groups. 

In this paper a set of elements S for which postulates I and II hold 
is called an alternation groupoid. A series of extensions of an alterna­
tion groupoid is described which for certain groupoids leads to an 
Abelian quasigroup (Corollary 5.5). This imbedding process has as a 
special case the well known procedure for imbedding commutative 
semigroups in groups or, more generally, the procedure for imbedding 
a space 5, in which there is a commutative and associative operation, 
in a space S' in such a way that each "regular" element in S has an 
inverse in S' (see, for example, [4, p. 24]). I t should be noted that 
A. Malcev [5, §2] has given an example of a noncommutative semi­
group which cannot be imbedded in a group. 

Some interesting examples of Abelian quasigroups and alternation 
groupoids are given in §1. 

1. Examples of alternation groupoids. The examples of Abelian 
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quasigroups that have appeared in print fall mainly in two classes— 
those based on a finite set of elements and those based on a properly 
chosen set of numbers by defining x # y as ax+by+c> or cxayb, where 
a, by and c are constants (in particular, # can be ordinary addition, 
subtraction, multiplication, division, or the operation of taking an 
arithmetic or geometric mean). These examples give little indication 
of the variety of form found in alternation groupoids. 

Moreover, the geometric interest of alternation groupoids can be 
given greater emphasis. For instance, each Abelian quasigroup 
furnishes an analogue of the theorem that the midpoints of a quad­
rilateral determine a parallelogram. To see this, let 5 be the set of 
points in the plane and let # be the operation of taking the midpoint. 
Consider the associated group operation defined by Murdoch—for 
fixed elements r and s in S, x o y is defined as uv where x = ur and 
y = sv. Under o, the elements of 5 form a commutative group which 
has sr as its unit element. Thus ur o sv = uv o sr and sr, sv, uv, and 
ur are the vertices of a parallelogram. In the case of example E below, 
this process gives an interesting construction for an ordinary paral­
lelogram. From example F, we obtain an odd construction for projec­
tive addition by following the steps in the definition of operation o. 

A. Let 5 be the set of positive integers. Let a, /?, 7, and S be integers 
such that a, 7, a+ /3 , and 7 + 8 are positive and aS+/3 = 7/3+S. De­
fine x # y as max [ax+/3, 73^+0]. 

B. Let a and b be points in the projective plane. Let S be the set of 
points of the plane not on the line ab. Define x § y as the point of 
intersection of the lines xa and yb. 

C. Let a be a point in the complex plane and 5 the set of points 
in the plane excluding a and 00. Let x § y = x—a(y—a)/y—a+a, 
the reflection of x with respect to the line ay. 

D. Let a and 5 be chosen as in the preceding example but let 
# # y = (y — a)y—a/x—a-\-a, the inverse of x with respect to the 
circle of center a which passes through y. 

E. Let 5 be the set of points in the Euclidean plane and a, b, and 
c fixed elements of S. Let x # y be defined as the point z which de­
termines a triangle xyz strictly similar to the triangle abc in such a 
way that vertices x, y, z correspond respectively to vertices a, b, c. 

F. Let S be the set of points on the projective line, s a fixed ele­
ment of 5 , and r a fixed real number. Let x # y be defined as the 
point z for which the double ratio (sxyz) = r. Defined in numeri­
cal terms x # y== [xy — s{#(l— r)+yr} ]/[xr+y(l— r) — s] and when 
r = l /2 we see that the arithmetic and harmonic means are special 
cases of this alternation. 
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2. Definitions and notation. In the pages following S denotes an 
alternation groupoid. It is well known that if 5 has a unit element the 
alternation is commutative and associative and that, conversely, if 
an operation is commutative and associative it is an alternation. 

An element a in S is called left regular if, for all elements x and y 
in S, ax = ay implies x=y. In much of the material which follows we 
consider only "left" conditions and their consequences. We shall 
omit statements with corresponding "right" or "left and right" condi­
tions. Here, for example, right regularity of an element has an obvious 
definition and to say an element is regular means that it is both left 
and right regular. 

An element a in 5 is called left proper if, for all elements b in S, 
ax = b has a unique solution, x, in S. It follows that each element left 
proper in »S is left regular in S. An element 0 in S is called left null if 
dx = d for all elements x in S. If 5 has more than one element, a left 
null element is not left regular. 

An element, <l>(x), is a power of x if it belongs to the set of elements 
$(x) defined recursively by the rules: 

(i). x belongs to <£(x), 
(ii). If y and z belong to <&(x), yz belongs to $(x). 

Murdoch has shown that in an alternation groupoid a power of a 
power of x is a power of x and that the following laws hold: 

<t>(xy) = <t>(x)<l>(y), </>i02(tf) = <t>2<t>i(oc). 

An element of S is said to be left regular* if all of its powers are left 
regular. We denote by L, Z,*, and L** respectively the sets of ele­
ments in 5 which are left regular, left regular*, and left proper in S. 
The sets of elements with the corresponding right properties are 
denoted by R, R*, and i?** respectively. Finally, we let P = L**Pii^** 
and Q = L*r\R*. 

3. Relations between subsets of S. 

THEOREM 3.1. L* is an alternation groupoid. 

PROOF. It is sufficient to show that L* is closed under #. Let (j>{ab) 
be a power of ab where a, &G-Z*. Assume that for some #, y&S, 
<j)(ab)x=4>(ab)y. T h e n 

[<l>(aa)<l)(aa)][<l)(bb)x] = [<l>(aa)<l>(bb)][(l>(aa)x] 

= cj){(aa)(bb)} [<j>(aa)x] = <f>{(ab)(ab)} [<j>{aa)x] 

= [<t>{ab)<t>{aa)][<t>{ab)x\ = [<j>{ab)<t>{aa)][<j>{ab)y}. 

Similarly, 
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[<t>(aa)<t>(aa)][<t>Q)b)y] = [*(a»)*(^)][*(aJ)y]. 

We may cancel to obtain (j>(bb)x~<l)(bb)y and x—y. Hence L* is 
closed under #. 

COROLLARY 3.2. L is an alternation groupoid if and only if 
L = L*. 

THEOREM 3.3. L** is an alternation groupoid. 

PROOF. We must show that L** is closed under #. For h and kÇ:L** 
and a £ 5 , we find a solution x of the equation (hk)x~a by choosing 
y, z, w and x so that hy = a> hz~h, kw~y, and x = 2zc. 

COROLLARY 3.4. L**CL*CL, 

PROOF. The second inclusion relation follows from the definitions 
of L and L*. Since the theorem implies that all powers of a left proper 
element are left proper and since a left proper element is left regular, 
the first inclusion relation is valid. 

THEOREM 3.5. If abÇ^L, then bÇ^L, If in addition R?£0, aÇ^L, 

PROOF. If we have bx = by, (ab) [(ab)x] = [a(ab)](bx) = [a(ab)](by) 
= (ab) [(ab)y] and x~y. If r £ i ? and ax = ayf (ab)(xr) = (ab)(yr), and 
x~y. 

COROLLARY 3.6. If aô£L* , bÇiL*. If in addition R^O, a £ L * . 

THEOREM 3.7. J / L V O and i ?*^0 , then L*=R* = Q. 

PROOF. Consider elements / and r in L* and R* respectively and 
p, a power of r. We first prove that IpÇzI*. Suppose (lp)x — (lp)y. 
Then 

[(ll)x][(ppXpp)j = [(lp)x][(lp)(pp)] 

= [(ip)y][(!P)(pp)] = i(Jt)y][(PP)(PP)] 
and x = y. By Theorem 3.5, IpÇîL implies pÇzL. Hence rÇzL* and 
R*C1L*. Similarly, we prove Z,*CjR*. 

LEMMA 3.8. If hk<EL**, h(hk)EL. 

PROOF. Let hk = L If (hl)x~(hl)y choose z and w so /£ = #, Iw — y. 
Then 

[WOO ][«&)]•= [W(tt)][(«)(fa)] 
= [(U)(hi)][(**)*] = [(«)(**)][(«hi-

Similarly, 
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[(H)(0)][*(*»)] = [(UW)][(hl)y . 

We cancel to obtain z — w. Hence x=y. 

THEOREM 3.9. Ifhk<EL**, fe£L**. 

PROOF. Let l = hk. To solve the equation kx = a choose y and x so 
ly = (H)a and lx = ;y. Then (hi) (kx) = (hk) (lx) =ly = (hl)a. By the 
previous lemma, kx = a. 

COROLLARY 3.10. All elements left proper in S are left proper in L**. 

COROLLARY 3.11. If L**^0 and JR**^0, then L** = £** = P . 

PROOF. T O prove, say, JR**CL**, consider r£i£**. Since there exists 
an element x such that xr = l, it follows from the theorem that r £ £ * * . 

LEMMA 3.12. If L**^0 , a £ £ * , bE.L, and c<ER, then abEL and 
bcER. 

PROOF. If /G£**, / and al G£*. If (ab)x = (ab)yt let te = xand lw = y. 
Then (al)(bz) = (al)(bw)y z~w, and ^ = 3̂ . Thus abÇ^L. I t follows as a 
particular case of this result that lb EL. Hence if x(fo)=;y(ôc), 
(lb) (zc) = (Zi) (ze;c), z = w, and # = ;y. 

LEMMA 3.13. /ƒ L**^0 awi i ? ^ 0 , L C # . 

PROOF. Let &G£ and c G ^ . By Lemma 3.12, bcER. By the "right" 
dual of Theorem 3.5, bcÇiR implies bÇzR» 

LEMMA 3.14. If R^O, L**QR*. 

PROOF. Let rER and let <j>(l) be a power of IÇ1L**. By Lemma 3.12, 
4>(l)r<ER. Hence 0(Z) G # and / G # * . 

THEOREM 3.15. IfL**^OandR?*0,L**QQQLQR. 

PROOF. The inclusion relations are consequences of Corollary 3.4, 
Lemmas 3.13 and 3.14, and Theorem 3.7. 

THEOREM 3.16. J / P ^ O , P<^Q = L = R. 

PROOF. If P ^ 0 , neither L nor i?** is null. By the dual of Theorem 
3.15, R**QQQRQL. From these relations, from Theorem 3.15, and 
from Corollary 3.11, the conclusion of this theorem follows. 

As an immediate consequence of our definitions, we have the follow­
ing relations. 

THEOREM 3.17. If Si and £2 are alternation groupoids and S1QS2, 
then Li^Sir\L2 and Li*3Sif\L2*. 
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4. The imbedding theorem. This section is devoted to a proof of 
Theorem 4.1. If 5 has no left regular* element we may satisfy the 
theorem by choosing 5» as S. Hence throughout the section we as­
sume L*3^0. Notations such as L%, the set of left regular* elements 
in 5*00, have an obviously meaning. We show in Theorem 4.11 that 
the following theorem cannot be made stronger by replacing left 
regularity* with mere left regularity. 

THEOREM 4.1. An alternation groupoid S can be imbedded in an 
alternation groupoid S* with the following properties: 

(A). Z* is isomorphic to a subset of L*. 
(B). Left regular* elements in S* are left proper in S*,. 
(C). S,» is a minimal extension of S into an alternation groupoid 

with properties A and B, 

DEFINITION. S I , the first left extension of S, is a groupoid whose 
elements are ordered pairs (a, b), where a £ L * and ô £ S . In Si we 
define a binary operation # and the equality of elements as follows : 

(i). (a,b)#(c,d)=:(ac1bd). 
(ii). (a, b) = (c, d) if and only if, in S, (aa)d = (ac)b. 
When the notation (a, b) is used it is assumed a is left regular*. 

By <j)(a, b) we shall mean <£((a, b)). This power obviously has the 
value (0(a), 0(e)). 

LEMMA 4.2. # is a binary operation in Si. 

PROOF. S I is clearly closed with respect to #. To show the operation 
is uniquely defined, we assume (a, b)=*(c, d) and (eff) = (g, h). I t 
follows that 

[(ae)(ae)](dh) = [(aa)d][(ee)h] = [(ac)b][(eg)f] = [(ae)(cg)](bf)t 

(aet bf) = (eg, dh), and (a, b)(ej) = (c, d)(g, h). 

LEMMA 4.3. If (a, b) = (c, d), then (xa)d = (xc)b for all x in S. 
Conversely, if x£.L* and {xa)d = (xc)b, then (a, b) = (ct d). 

PROOF. Since (aa)d = (ac)bf 

[(aa)a][(xc)b] = [(0#)a][(a<;)J] ^ [(«^)^][(«^)^] = [(aa)a][(#a)d]. 

Since (aa)a is left regular, the first statement is proved. The second 
statement has a similar proof. 

LEMMA 4.4. The relation " = " is an equivalence relation in S%. 

PROOF. Tha t the equality is reflexive is trivial ; that it is symmetric 
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follows from the previous lemma. To prove transitivity, assume 
(a, b) = (c, d) and (c, d) = (e, ƒ). I t follows that 

[(cc)(cc)][(aa)f] = [(cc)(aa) ][(cc)f] 

= [(ca)(ca)][(ce)d] = [(ca)(ce)][(ca)d] 

= [(cc)(ae) ][(cc)b] = [(cc)(cc)][(ae)b]. 

Cancellation of (cc)(cc) gives the condition that (a, b) = (e,f). 
We have shown that Si satisfies postulate I. We can show without 

difficulty that postulate II is also satisfied, and we state the following 
theorem by way of summary. 

THEOREM 4.5. Si is an alternation groupoid. 

THEOREM 4.6. (a, x)E:Li*[resp. Rf] if and only if xÇEL*[resp. R*]. 

PROOF. Proofs of both statements are similar—that the conditions 
are sufficient is easily seen. To prove necessity assume, say, xÇ£L*. 
There exist elements y and z and a power of x such that y^z but 
<f>(x)y~<j)(x)z. T h e n <£(#, x)(a} y) = {<t>(a)at <f>(x)y) — (<l>(a)a, <t>(x)z) 
= <£(#, x)(a, z). If <j>(at x)SLiy (a, 3O = (a, z) and y = z. Hence 0(a, x) 
(£Z,i and (a, x) (£Za*. 

COROLLARY 4.7. R? = 0 if and only if R* = 0. 

LEMMA 4.8. (a, ax) = (6, by) if and only if x~y. 

THEOREM 4.9. If ££.£*, the correspondence x~(e, ex) defines an 
isomorphism of S to a subset of Si under which L* is isomorphic to a 
subset of Li*. 

PROOF. That the correspondence determines an isomorphism fol­
lows from Lemma 4.8. From Theorems 3.1 and 4.6 and from Corol­
lary 3.6, (e} ex) £ L * if and only if x £ L * . 

Whenever it proves convenient, we identify S with the subset of 
Si to which it is isomorphic. 

We have shown that Si satisfies property (A) of Theorem 4.1. 
Tha t we cannot expect it to satisfy properties (B) and (C) follows 
from consideration of the example where S is the set of real numbers 
on a finite interval and where x # y is defined as (x+y)/2. Si does, 
however, satisfy a weakened form of Theorem 4.1 given below. 

THEOREM 4.10. Si can be uniquely characterized as a minimal ex­
tension of S into an alternation groupoid which satisfies property (A) 
of Theorem 4.1 and the following property: If aÇz.L* and bÇîS, then 
ax~b has a solution x in Si. 
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PROOF. Since (e, ea)(a, b)~(e, eb), (a, b) is the required solution. 
If 5 is imbedded in a space T with this property and property (A), 
let 7\ be the subset of T made up of elements which are solutions of 
the equations ax = b where a £ L * and ÔG5. Each element of T\ can 
be represented as an ordered pair [a, b]. It is a routine matter to show 
that the correspondence (a, b)~[a, b] maps Si isomorphically on TV 

DEFINITION. 5W, the nth left extension of 5, is defined as the first 
left extension of Sn-i, w = 2, 3, • • • . S*» the left extension of 5, is 
defined as the union of the spaces Sn. 

Thus by repeating the imbedding process just discussed, we obtain 
SQS1QS2Q • • • QSao. It is evident that Sw is an alternation 
groupoid and that L*CL*. If a g i * and j3£Soo, there exists (see 
Theorem 4.9) an integer n such that a £ L „ * and j3£Sw . By Theorem 
4.10, ax =13 has a solution x in iSn+î -Soo and thus a£L** . Finally it is 
not difficult to show S* is the minimal extension described in Theorem 
4.1, and the proof of that theorem is now complete. 

If we measure the worth of an extension T of S by the number of 
elements of 5 which are left proper in T, the following theorem 
shows that the left extension of S, described in this section, is the best 
possible. The theorem is a direct consequence of Theorem 3.17 and 
Corollary 3.4. 

THEOREM 4.11. There exists no extension of an alternation groupoid 
S into an alternation groupoid T such that an element not left regular* 
in S is left proper, or even left regular*, in T. 

THEOREM 4.12. The properties of being right regular*, right proper 
and left proper are preserved under left extension. 

PROOF. Tha t right regularity* is preserved follows from Theorems 
3.7 and 4.6 (it can be shown that if Z,**5^0, even right regularity is 
preserved). To show right properness is preserved it will be sufficient 
to find an element of Si which when multiplied on the right by 
(e, er) gives (a , / ) , where r^R**, e and a £ L * , and ƒ £ £ . Choose g and 
d so f=g(rr) and a = dr. Applying Theorem 3.7 and the dual of Corol­
lary 3.6, we have aÇ£R*, d(~R*, and dÇ:L*. Hence (d, g) is an ele­
ment in Si. It proves to be the element we sought. That left proper­
ness is preserved is proved similarly. 

Before leaving this section we note the inclusion relations which 
have been established by Theorems 3.17, 4.1, 4.12, and Corollary 3.4. 

THEOREM 4.13. L**CL**=£*, R**QR**, L * - 5 P i L * , and R* = S 

r\Rt. 
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5. General extensions of S. I t is necessary to introduce new nota­
tion. Let So be 5. Let Sooo be S* and let Sno be Sn, the nth left extension 
of S. Let Sooo and S0n be respectively the right extension and the nth 
right extension of S. Finally let Smn be (Sm0)on where m and n are 
any non-negative integers or where either m and n or both are re­
placed by the symbol oo. It is evident that Sn+\ o = (Sno)io and 
So n+i = (Son) 01. I t is consistent with what we have done in §4 to define 
S10 = S [Soi = S] in case L* = 0 [i?* = 0] . 

LEMMA 5.1. Su is isomorphic to (Soi) 10. 

PROOF. If Z,* = 0, £01 = 0 by the dual of Corollary 4.7, and (Soi)io 
= Soi = (Sio)oi = Sn. Similarly if i?* = 0, Su = (Soi) 10. We now assume 
L*~R*7*0 (see Theorem 3.7) and let ff»£Sn. We define a cor­
respondence Xn^^^n where yn G (Soi) 10 by means of six equations. By 
Theorem 4.10 and its dual, there exist elements rn in Rf0, pn in S10, an 

and bn in L*9 and cn and gn in S, such that av« = £w in Sn, anr» = £» in 
S10, and bnpn — gn in S10. Since an and rn are regular* in S10, cn is regu­
lar* in S10 and hence in S (see Theorems 3.1, 3.17, and 4.12). Let sn 

and qn be elements in S0i such that snan = bn and qncn = gn in Soi. By 
the dual of Corollary 3.6, sn is right regular* and hence regular* in 
Soi. There exists an element yn in (Soi)io such that snyn = qn in (Soi)io. 
That a different choice of elements rw, pn, an, bn, cn and gn will lead to 
the same element yn will follow from our proof that Xm — Xn if and only 
if ym^yn- We apply repeatedly Lemma 4.3, Theorem 4.10, and their 
duals. Assume, say, Xi = x2. By the definition of equality (in the 
1st right extension of S10), £2(?Vi) = pi(r2ri) in S10. But 

[bi(a2aù ] [pi(r2ri) ] = gi(c2d) 

and 

[62(01^1) ] [p2(firi) ] = g2(cid). 

Hence, in S, 

[ {ii(tfitfi) } {bi{a2aù} ] {g2(ciCi)} = [ {iifai^i)} {b2(axa^} ] {gi{c2c^)} 

or, restated, 

{(Ji6i)g2J [{{aia2)ci\ {(aiajci} ] = {(hb2)gi} [{(aia^)c2) {(a^Ci} ]. 

This equality implies that the solutions a and /3 of the equations 

a[(aidi)c2] = (bibi)g2> 

P[(aia2)ci] = (hb2)gx 
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are equal in Soi. These solutions are (siSi)q2 and (siS2)qi. Their equality 
implies that yi=y2 in (Soi)io. Since these steps are reversible, the cor­
respondence of xn to yn is one to one. It remains to prove that the 
correspondence is an isomorphism. If x%~yi and X2i~s^y2) l e t #i#2 == %zy 
7V2 = 7'3, p\p2 — pz, and so on. I t follows that %\%2 — x%~y% = 3/^2. 

For convenience, we identify Sn with (Soi) 10 and use equality be­
low instead of an isomorphism notation. 

LEMMA 5.2. (50w)mo = (5m0)on for my n = 0, 1, 2, • • • . 

PROOF. AS in Lemma 5.1 we may assume Z,*=i£*^0. Clearly the 
equality holds if either m or n = 0. We assume m^O and n^O and 
proceed by induction from the result of Lemma 5.1. If Shi~ (Soi)ho, 
then Sh+i i = (Sh+i o)oi==

 1(S ,AO)IOJOI= L ( ^ O ) O I J I O = L(K^OI)^OJIO
 == (SoO/i-fi o> 

a n d Smi = (Soi)mo for m = l , 2, • • • . S imi l a r ly , if Sm*=(Sofc)«oi 
Sm h+i = (So A+i)mo, a n d t h e l e m m a is p r o v e d . 

THEOREM 5.3. The right extension of the left extension of S is iso­
morphic to the left extension of the right extension of S. 

PROOF. It is easy to validate the two equalities below which have 
not yet been established. 5oooo = (Sooo)ooo = U»(Um5«o)oii = U„Um(SOTo)on 
= U w U n W 0 w ) r a 0 = = U m ( U w O 0 n j m 0 ^ (^Ooo)ooO» 

The following theorem follows principally from Theorems 4.1, 
4.13, and their duals. 

THEOREM 5.4. In Theorem 4.1 we may replace S* by S** and left 
regularity* properties by the corresponding regularity* properties. 

COROLLARY 5.5. An alternation groupoid S may be imbedded in an 
Abelian quasigroup if and only if all elements of S are regular. 

We may classify alternation groupoids according to whether or 
not they have left regular* or right regular* elements. Members in 
different classes, as we have seen, have distinctly different types of 
extensions. 

I. L* = i?* = 0. 
Here 50000 = S has no left or right proper element. An example: 

example A of §2 with a = 5,/?= —2,7 = 3, and 5= — 1. In this example, 
1 is regular and 2 Ei£. 

II . L 'VO, #* = 0. 
Here S^-S* and in 5» we have L**=Z/i;££o0 and R^-O. 

Example: let 5 be the set of points (x, y) in the square — l ^ x ^ l , 
— l ^ ^ ^ l and define (xi, yi) # (x2, 3̂ 2) as (x i /2+x 2 /2 , y2). 

I I I . The situation dual to that of II . 
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IV. L* = R*9*0. 
Here «S^ is such that P«>o9 = Q00o0=

:L0!ioo — R0000. (If S^T^S**, Z>t* 
= Ooo££ooÇ^oo and i?** = 0.) Example: example A of §2 with a = 3, 
j8= - 2 , 7 = 2, and 5 = - 1 . In this example, l G Ç a n d 2Gi?. 

6. Conditions which insure that L = L*. Since a necessary and 
sufficient condition that S have an extension with left proper elements 
is that 1^*7^0, it is of interest to find what conditions insure that left 
regular elements are left regular* or, in other words, that the left 
regular elements are closed under #. This closure property holds in 
many special alternation groupoids—for example, an idempotent 
groupoid or a groupoid in which # is associative. The following 
theorem shows in general how badly an alternation groupoid must 
behave if L ^ L * . 

THEOREM 6.1. If S is an alternation groupoid in which L ^ O and 
LT^L*, then: 

(1). S is infinite. 
(2). There is no proper element in S. 
(3). If S has a right proper element, S has left regular elements which 

are not right regular. 
(4). If S has a left proper element, then either S has no right regular 

element or S has right regular elements which are not left regular. 
(5). S has left regular elements whose squares are not left regular. 
(6). There are elements in S neither left regular nor left null. 

PROOF. One proves property (1) just as one proves every finite 
integral domain is a field. Assume S contains a finite number of ele­
ments xi, X2, Xzj • • • , xn where #i, say, £ L . Since no two elements in 
the set equal, this set consists of the elements 
of 5 in some order. Hence Xi££**, and by Corollary 3.4, xiGL*. 

Property (2) is a direct consequence of Theorem 3.16. To prove 
property (S) we show that if all squares of left regular elements are 
left regular, L is closed under #. Let a and &EL and let (ab)x = (ab)y. 
Then [(aa)(aa)][(bb)x] = [(ab)(aa)][(ab)x] = [(aa)(aa)][(bb)y]. Since 
bb, aa> and (aa)(aa)ÇzL, x — y. 

We prove property (3) by showing that if it does not hold property 
(5) does not hold. Let aE:L and assume LQR. Then, by the dual of 
Lemma 3.12, aaÇzL. Property (4) is proved similarly. Property (6) 
is a consequence of Theorem 6.6 to a proof of which the remainder of 
this section is devoted. 

Let N, Ni and i\T2 denote respectively the sets of null, left null, and 
right null elements in S. The following lemma holds for any groupoid 
satisfying postulate I of the introduction. 



1949] THE INVERSE OPERATION IN ALTERNATION GROUPOIDS 757 

LEMMA 6.2. If Ni^O and N^O, there exists a null element 0 and 

PROOF. If 0iC.Ni and d2&N2t 01=0102=02. Thus each left null ele­
ment equals every right null element and, in particular, all null ele­
ments are equal. 

LEMMA 6.3. If an alternation groupoid S has more than one element 
and if abÇzL, then neither a nor bC.Ni. 

PROOF. If aENh ab = aGNi. If bENh (ab)[(ab)a] = [a(ab)](ba) 
= [a{ab)]{bb) = (ab) [(ab)b] anda = bGNi. 

LEMMA 6.4. If S=L\JNi, if Ni^O, and if Ni?*S, there exists a 
null element 0 in S. 

PROOF. Let xÇzS, aÇ^L, 0i and Q1Ç.N1. By Lemma 6.3, xdi and x02 

ENi. Hence aBi = (o0i) (02a) = (o02) (did) =a02, and 0X = 02. Thus all left 
null elements are equal, say, to 0. In particular xd, being left null, 
equals 0. 

As a corollary to Lemmas 6.2 and 6.4 we have: 

LEMMA 6.5. If S = LyUNi, if 1,7*0, and if L?*S, there exists a null 
element 0 such that L\J(d) = 5. 

THEOREM 6.6. If S=LVJNU L=L*. 

PROOF. If L = 0 or L = 5, the theorem holds. If neither equality 
holds, iVi= (0) by Lemma 6.5. Then a and b&L implies a ô £ L , for if 
ao=0, ab = aO, and Z>=0. 
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