A BOUND FOR THE MEAN VALUE OF A FUNCTION

J. ERNEST WILKINS, JR.

Let f(t) be a bounded measurable function defined when $0 \le t \le \pi$. The Fourier sine series associated with f(t) is

$$\sum_{n=1}^{\infty} b_n \sin nt, \qquad b_n = -\frac{2}{\pi} \int_0^{\pi} f(t) \sin nt \, dt.$$

We shall be interested in this paper in establishing a bound for the mean value¹

$$a=\frac{1}{\pi}\int_0^{\pi}f(t)dt$$

when f(t) is such that one of the coefficients b_n vanishes.

We can suppose without essential loss of generality that $|f(t)| \leq 1$. Since $b_{2n} = 0$ whenever f(t) is constant, it is clear that the only conclusion on a that can be drawn from the inequality $|f(t)| \leq 1$ and the equality $b_{2n} = 0$ is that $|a| \leq 1$, and this conclusion is valid whether b_{2n} vanishes or not. Hence we shall restrict attention to b_{2n+1} . For the same reason we shall not discuss the vanishing of the coefficient

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cos nt \, dt$$

of the Fourier cosine series of f(t).

Suppose that $b_{2n+1}=0$. Define a positive number y by the equation $y=\sin [\sec^{-1}(2n+2)]$ where the \sec^{-1} lies between 0 and $\pi/2$. Let E be the sum of the intervals

$$\frac{2p\pi + \sin^{-1}y}{2n+1} \leq t \leq \frac{(2p+1)\pi - \sin^{-1}y}{2n+1} \quad (p = 0, 1, \dots, n),$$

where the sin⁻¹ lies between 0 and $\pi/2$. Then it is clear that

(1)
$$\begin{aligned} \sin (2n+1)t &\geq y & \text{if } t \text{ is in } E, \\ \sin (2n+1)t &< y & \text{if } t \text{ is not in } E. \end{aligned}$$

Received by the editors February 11, 1948, and, in revised form, June 14, 1948.

¹ The importance of the concept of mean value in the study of Fourier series can be seen by consulting Bohr [1, pp. 7-29]. Numbers in brackets refer to the bibliography at the end of the paper.

Now let $f_0(t) = -1$ if t is in E and $f_0(t) = +1$ if t is not in E. It follows from the definitions of y and E that

$$\int_0^{\pi} f_0(t) \sin (2n+1)t \, dt = 0,$$

and that the mean value of $f_0(t)$ is

$$a_0 = 1 - (2/\pi) \operatorname{meas} E$$

= $[4(n+1)/(2n+1)\pi] \operatorname{sec}^{-1} (2n+2) - 1/(2n+1).$

We shall now prove that if f(t) is an arbitrary real-valued measurable function such that $|f(t)| \leq 1$ and $b_{2n+1}=0$, then $|a| \leq a_0$. Let $g(t) = f(t) - f_0(t)$. Then $0 \leq g(t)$ on E and $0 \geq g(t)$ on the complement cE of E. By virtue of relations (1) we conclude that

$$\int_{E} g(t) \sin (2n+1)t \, dt \ge y \int_{E} g(t) dt,$$
$$\int_{cE} g(t) \sin (2n+1)t \, dt \ge y \int_{cE} g(t) dt.$$

Adding and remembering that $b_{2n+1}=0$ for both f and f_0 we see that

$$0 \ge y \int_0^{\pi} g(t) dt,$$

with equality if and only if g(t) = 0 almost everywhere. Since y > 0, we have that

(2)
$$\int_0^{\pi} f(t)dt \leq \int_0^{\pi} f_0(t)dt,$$

with equality if and only if $f(t) = f_0(t)$ almost everywhere.

Now let $h(t) = f(t) + f_0(t)$. Then $0 \ge h(t)$ on E, $0 \le h(t)$ on cE, and so

(3)
$$\int_{E} h(t) \sin (2n + 1)t \, dt \leq y \int_{E} h(t) dt,$$
$$\int_{cE} h(t) \sin (2n + 1)t \, dt \leq y \int_{cE} h(t) dt,$$
$$0 \leq y \int_{0}^{\pi} h(t) dt,$$
$$-\int_{0}^{\pi} f(t) dt \leq \int_{0}^{\pi} f_{0}(t) dt,$$

[August

802

with equality if and only if $f(t) = -f_0(t)$ almost everywhere. Combining the inequalities (2) and (3) we conclude that when f(t) is a real-valued measurable function such that $|f(t)| \leq 1$ and $b_{2n+1}=0$, then

(4)
$$|a| = \left|\frac{1}{\pi}\int_0^{\pi} f(t)dt\right| \leq \frac{4(n+1)}{(2n+1)\pi} \sec^{-1}(2n+2) - \frac{1}{2n+1},$$

with equality if and only if $f(t) = \pm f_0(t)$ almost everywhere.

In particular, if $b_1=0$, then $|a| \leq 1/3 = .3333$, while if $b_3=0$, then $|a| \leq .7855$. The right-hand side of the inequality (4) approaches unity as *n* approaches infinity.

This conclusion may be extended to complex functions f(t) as follows. Let $f(t) = f_1(t) + if_2(t)$, where $f_1(t)$ and $f_2(t)$ are real. There exist real numbers x and y such that

$$x^{2} + y^{2} = 1,$$
 $x \int_{0}^{\pi} f_{2}(t) dt + y \int_{0}^{\pi} f_{1}(t) dt = 0.$

Hence it is true that the mean value of f(t) has the same absolute value as the mean value of the real function $xf_1(t) - yf_2(t)$. This real function has a Fourier coefficient b_{2n+1} equal to zero since this is true for both $f_1(t)$ and $f_2(t)$ and is bounded by one since f(t) is and $x^2 + y^2$ = 1. Since the inequality (4) is valid for $xf_1 - yf_2$, it is therefore true for f(t). Moreover since equality for $xf_1 - yf_2$ implies that $xf_1 - yf_2$ = $\pm f_0(t)$, equality for f(t) implies that $f(t) = cf_0(t)$ where c is a constant of absolute value unity.

BIBLIOGRAPHY

1. H. Bohr, Almost periodic functions, New York, Chelsea, 1947.

American Optical Company