
CONVEXITY THEOREMS 

R. SALEM 

In spite of the generality of our title, we do not intend to give here 
a survey of all convexity theorems. Most of them, like the three circles 
theorem of Hadamard, are too classical to be commented on here. 
We shall confine ourselves to Marcel Riesz's convexity theorem, 
which is one of the very powerful tools of modern analysis, and to 
certain of its recent extensions. 

1. Marcel Riesz's theorem. Let 

m n 

be a bilinear form, where the constants a»y are real or complex, and 
the variables #», yj are essentially supposed to be complex. Let a ^ O , 
jS^O be real numbers, and denote by M(a, /3) the maximum of | / | 
under the conditions 

m n 

l l 

(If a = 0 the first condition means that |#»| ^ 1 for i = l , 2, • • • , m, 
and the same remark applies to the second condition.) Then 
log M(a, j3) is a convex function of a, j3 in the quadrant a ^ O , jS^O; 
in other words if 0 < / < l and if 

a = ait + a2(l - 0. 0 s" ft* + ft(l - 0. 
then 

M(a, fi) S M'(ah ft)Jf^(a,, ft). 

This is M. Riesz's fundamental theorem. (See M. Riesz [5]1 and 
a different proof in Paley [4] ; see also a generalization of the theorem 
in L. C. Young [ i l ] . ) M. Riesz's argument proved the convexity 
only in the triangle O ^ a ^ l , 0 ^ / 3 ^ 1 , a+f3*zl. The extension to the 
whole quadrant is due to Thorin [9]. We shall not give the proof of 
the theorem here, since we intend to sketch later on the proof of a 
more general result. Let us only point out that if we restrict the 
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variables to be real, the convexity theorem can not be extended be
yond the domain a +|8j^ 1, a è 0, /3 è 0. For the proof of this result, we 
refer the reader to Thorin [lO]. We add that in the classical applica
tions of the theorem the convexity in Riesz's triangular domain is 
sufficient. 

In its applications, M. Riesz's theorem is mostly used in a dif
ferent form. Let us write 

m 

Xj(%) « X) au*i ( i = 1, 2, • • • , »). 
» - l 

Let now 0^*7^1 and a ^ O , and denote by 9ft(a, 7) the maximum of 

(ii^i^y 
when 

m 

1 

I t is a classical consequence of Holder's theorems that, if 0 = 1 — 7 
and M(a, j8) has the same meaning as above, 

(ii^ii^y 
9R(a, y) « max = M (a, ft) 

( m \ a 

and thus 2K(a, 7) is convex in the domain ce^O, 0 ^ 7 ^ 1 . (If the 
variables are real, the theorem is true in the domain ce^O, 0 ^ 7 ^ 1 , 
7^0!.) 

Finally, it is hardly worth mentioning that the theorem remains 
valid if we consider, under the same conditions for the exponents, 
the maximum of 

where p,->0, 07>0. 

2. The applications of M. Riesz's theorem. The most general ap
plication of M. Riesz's theorem, which is due to M. Riesz himself, 
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can be stated as follows. 
Let us denote generally by Lrt+(hf h), for rjj£l, the class of (com

plex-valued) functions f(t) such that the Lebesgue-Stieltjes integral 
S\ \î\rà4>* taken with respect to the nondecreasing function # (0 , is 
finite. By 9lr,*[/] we shall denote the norm (ƒ£ | / | r # ) 1 / r . Let </>(t) 
(hûtlàh) and \{/(u) (u\^u^u%) be two nondecreasing functions. Let 
a ^ 1, c ^ 1 and suppose that there exists a linear operation T associat
ing to every f(t)ÇzLa>+(h, h) a function T(J) =g(#)£.Z/»*(#i, u2) such 
that the ratio 

is bounded independently of ƒ. The operation T will be called of the 
type (a, c). The least value of this ratio, that is, the modulus of the 
operation, will be denoted by M(a, 7) , where a=>l/a, 7 = l /c . 

Now let <t> and \f/ be fixed, and let T be an operation which is simul
taneously of the types (#i, d) and (a2, £2). Write a, = l/at-, 7 t = l / c » . 
Then, given any point (ce, 7) on the segment joining Pi(«i, 71) and 
P2O22, 72), the operation Z* can be extended so as to become also of 
the type (a, c) where a = 1/a, c = I / 7 . Moreover log ikf(a, 7) is convex 
on the segment P\P* (The domain of convexity is to be reduced to the 
triangle O g a g l , 0 ^ 7 ^ a if the functions are real-valued.) 

For the proof we refer the reader to M. Riesz's original memoir 
[5] or to Zygmund [13], whose convenient notations we have adopted 
here. Let us only point out that the result is essentially a consequence 
(1°) of M. Riesz's theorem; (2°) of the fact that the operation T is 
linear; (3°) of the fact that since the set of step functions is every
where dense in the class Lr>* ( l ^ r <<*>), we can approximate the 
functions of the class by step functions, and thus consider, instead 
of integrals, finite sums. 

The most familiar consequence of this result is the Young-
Hausdorff theorem, in the general form given by F. Riesz. Let 
0i> 02i • • • , 0n , • • • be an orthonormal set of complex-valued func
tions in (a, b), uniformly bounded, \<f)n\ SM, and let flf$ndt be the 
Fourier coefficient of the complex-valued function ƒ(/) with respect to 
<j>n. If we are given any sequence of numbers {cn} such that ]T)I cn\

2 

< co, we know that there exists an ƒ (t) £ L 2 having the cn's as Fourier 
coefficients; moreover ƒ£ | / | Ht~ ]T)I c*\2* K» *n addition, ]T}| cn\ < co, 
ƒ having the same meaning, one has |/| ^Mj2\cn\. 

ƒ(/) is obtained from {cn} by a linear operation of the type (2, 2) 
with modulus 1, and of the type (1, 00) with modulus M. Hence, if 
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a = X / 2 + 1-(1 - X ) = 1 - X / 2 , 
, x , (O < X < 1) 

fi - X/2 + 0-(l - X ) = X/2, 
the operation is also of the type (2/(2—X), 2/X) with modulus Jkf1~"x. 
Setting 2 / ( 2 - X ) = £ , 2/X = £' , one has 

l<p<2, l/p+l/p'-l, l - X = 2 / £ - l 

and 

( f l/lp'#) P ^ Jf(*-p)/p(Zl^lp)1/p-
The proof of the other part of the Young-Hausdorff theorem is 

similar. 
The Young-Hausdorff theorem is valid only if the orthogonal 

system is uniformly bounded. A generalization of the theorem in the 
case of an unbounded system has been given by Marcinkiewicz and 
Zygmund [3]. Assuming that the functions #» satisfy the inequality 

(ƒ.''*•'*) 
for a certain v>2, and applying in the same way as above M. Riesz's 
theorem, the authors get, instead of the preceding inequality 

but then p' is given by the equation 

p pf 

where 1/JJL+1/V = 1; besides, the series ] C | c n | 2 *s supposed to be 
convergent. (This condition is necessary only if the interval (a, b) is 
infinite.) The second part of the Young-Hausdorff theorem is gen
eralized in a similar fashion. 

Let us finally quote the following theorem, concerning Rada-
macher's functions and due to Zygmund [14]. Starting from the 
inequality 

a l \l/k / oo \ l / 2 

where ƒ ( 0 = 2o° cn<l>n(t)f </>n(t) being the nth Radamacher function, 
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an inequality which holds whenever £ ) | cn\
2 < 00 and k ^ 2 , and using 

the relation 

0 

the author gets 

a l \l/k / 00 \ l / r 

whenever ^ d c n | r < ° ° » l ^ r ^ 2 , fe^l, and r ' is the complementary 
exponent to r (1/r+l/r' = 1). 

3. Thorin's generalization of M. Riesz's theorem. Thorin's first 
generalization [9] not only allows the extension, which we have al
ready mentioned, of M. Riesz's triangular domain of convexity to 
the whole quadrant, but, what is much more important for new 
applications, it shows that instead of the maximum of a bilinear form, 
we can consider the maximum of any entire function of n complex 
variables. 

The theorem of Thorin can be stated as follows: Let ƒ (zi, z2, • • •, zn) 
be an entire function of the n complex variables si, 22, • • • , zn. Let V 
be a bounded domain in the w-dimensional euclidean space with co
ordinates v\, z>2, • • • , vn. Let us denote by «1, «2, • • • , oin non-
negative exponents, and by M(ai9 0J2, • • • , an) the maximum of 
|/(si, • • • , 2») I under the conditions 

I *1 I = Vi\ • • • , J Zn I = vln (Vh V2, • • • , Vn) G V. 

Then log M(ai, • • • , an) is convex in the domain a ^ O 
(& = 1, 2, • • • , ») . 

The original proof of Thorin [9] was rather long. In 1944, Tamarkin 
and Zygmund [8] proved in a very elegant way that Thorin's 
theorem was a simple consequence of the maximum modulus theorem. 
We shall sketch here a short proof of Thorin's result which has 
been published recently [ó]. 

Suppose first that 0<A Svu^B < 00 (fe = l, • • • , n) and let us 
write Zk = e^h+^k (k = 1, • • • , n) where the rjk are arbitrary and the 
point (£1 • • • £n) belongs to the bounded domain D corresponding 
to (e*1, • • • , e t n ) £ F , Let a/b = afc+X& log t where the a& and X* are 
real and fixed, and / is a positive real variable. M {au • • • , an) be
comes a function of t> M{t), and we have to show that log M{t) is a 
convex function of log /. Write, for pz^l, 
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Ip(t) = I f(£l(ai+\ilogt)+iiii . . . £M«n+XnlogO+ti|n) \P 

-dix • • • dÇndr)! • • • dr)n, 

the integral being extended to the domain 

0 g Vk ^ 2TT, * « 1, • • •, n; (fa • • • fc) 6 Z>. 

If we consider now U s a complex variable, / =pei(r, p > 0 , the integral 
is a logarithmically subharmonic function of /, and so Ip(t) is, for a 
determined choice of the logarithm, a subharmonic logarithmically 
function of L Moreover this function is uniform, and IP(t)~Iv(p), 
thus depending only on the modulus of /. For: 

%k(ak + Xjb log p + \kia) + irjk = £*(0* + X* log p) + i(*?* + faX&<r) 

and our assertion is justified by the fact that the integral is ex
tended to all possible values of rjk, mod 2T. NOW log Ip(p) being sub
harmonic, log Ip(p) is a convex function of log p; and since M(t) 
= limp»eo [lP(t)]lfp it is sufficient to let p increase infinitely to obtain 
the asserted result. 

The argument remains valid without change if, instead of suppos
ing that f(zu • • • , zn) is analytic, we assume only that log | / | is sub
harmonic, that is, that \f(%i • • • s»)| is logarithmically subharmonic 
(in the paper quoted in [6] the word "logarithmically" has been 
omitted and should be restored). According to Lelong (Ann. École 
Norm. vols. 61-62 (1945) pp. 301-338) g(zx • • • sn) is subharmonic 
if g[#i(0 * • • <t>n(t)] is subharmonic for analytic functions <j>\{t) • • • 

As Thorin has pointed out, the convexity holds if we suppose only 
tyfeèO (& = 1, • • • , n) provided we restrict the domain of convexity 
from — oo <ak< co to ajc^O (fe = l , • • • , n). 

In his recent thesis [lO] Thorin has given further extensions of the 
theorem, especially to analytic and subharmonic functional. We 
refer the reader to Thorin's paper for these extensions which would 
require too much space to be quoted here with accuracy, 

4. Applications of Thorin's generalization. In order to understand 
the most interesting applications of Thorin's generalized convexity 
theorem, let us recall the following notations. A function f(z) of the 
complez variable z9 regular for | z | < 1 , is said to belong to Hp (p>0) 
if /o* \f(reie)\pdO is bounded as r -» l . One writes H instead of H1. 
A series (2J) of the form ^2oCne

niB, which is formally S+iT, where 5 
and T are conjugate trigonometric series, is said to belong to Hp if 
ƒ(*) = 22o° cnz

nÇ.Hp. If S (or T) is the Fourier series of a function of 
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the class L*> (p>l), then T(or S) belongs also to L*> and 2G£Tp; 
this, however, is false for £ = 1. If 2EHp ( p e l ) , both S and T are 
Fourier series of the class Lp. In other words the properties Hp for 
S and Z> for S are equivalent for p>\ but not for p = l. 

Now, certain theorems are true for power series of the class H but 
not for Fourier series of the class L. As an important example, we 
quote the following theorem due to Zygmund [12]. If Sn(0) is the 
partial sum of order n of the series ƒ (ei9)~ X)o* Cye^CzH, then 

r 2 v \Sn(B)(e)\ r 2 r i i 
I * r

 H J ] - degCil f(ei9) dB 
J o log [n(6) + 2] Jo U" n 

the constant Ci being independent of/, of the (measurable) function 
n(0) (O^w(ô)^iV), and of N. No such theorem is true for Fourier 
series of the class L. On the other hand, if / G # 2 , one has [l] 

J o log [»(*) + 2 ] J o U ; I 

If we could apply a convexity theorem here, we would deduce 

Jo log He)+ 2} PJ0 ' ' 

for ƒ G-H* and l ^ p ^ 2 , Cp depending on £ only; and the theorem 
would be also true, by what we have said, for Fourier series of the 
class Lp, but only for KpS2. Such a theorem is indeed true; in an 
important paper [2] Littlewood and Paley have given an extremely 
difficult proof of it. Hence it is of interest to prove the last inequality 
(which has important consequences in the theory of convergence of 
Fourier series) in a simple way by a sort of convexity theorem. 

The difficulty of the problem lies in the fact that, although the 
passage from f(eie) to Sn($)(0) is linear, Marcel Riesz^ theorem cannot 
be applied in the same manner as in §2 above, for the following 
reason: ƒ is not any Fourier series with complex coefficients; it is a 
power series, and for this reason cannot be approximated by step 
functions, but only by polynomials of the form X)o Ckeike. 

I t is, however, possible to overcome this difficulty, and we have the 
following general theorem [7]: 

Let M(a, j3) (a>0f /3^0) denote the maximum of the modulus of 
the complex bilinear form 

m n 

Z) 2 ajhX,yh 
j » 0 fe~0 
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under the conditions Z S W 1 / / ? â l , Jl* | / ( r « * ) | 1 / a â l ( O g r < l ) 
when f(z) = ^2Q xvz

v belongs to Hlla and has xo, Xi, • • • , xm as its 
first m + 1 expansion coefficients. Then, if a = tai + (l—t)a2, j3 = /j3i 
+ (l—/)j82, one has 

M(a, p) g C(ah a2)M
i(all Pi)Ml-*(*2l ft), 

C(«i, a2) being a finite constant depending on a\ and ce2 only. 
This is not exactly a convexity theorem, owing to the introduction 

of the constant C(ai, a2) ; but its usefulness is the same since it asserts 
the finiteness of M(a, fi) when (a, |3) lies on the segment (ai, ft) 
— (OJ2, ft) and when M{a\y ft) and ilf(a2, ft) are both finite. 

We shall indicate briefly the ideas underlying the proof. We start 
from: 

] m n j p /• 2ir " l o p n - | 0 

E E «M**y* ^ tf («. « I l ƒ(«") l1/a^ EI y» I1'" 
I /=o A=O I L J o J L o J 

valid for a = a i , j3=ft and a=ce2, j8=ft, and we want to prove that a 
similar inequality holds for a~ait+(l— /)a2, j3=f t^+(l — /)ft. The 
first natural idea is to prove the theorem when ƒ is a polynomial of 
degree p, and to replace the integral by a sum of p + 1 terms, which 
would allow us to take the elements of this sum (more exactly: the 
values of the polynomial at the points of subdivision of the interval 
(0, 2w), values which are linear combinations of the xj) as new vari
ables. The difficulty lies in the fact that the ratio between the integral 
and the approximating sum lies between two constants only if the ex
ponent 1/a stays larger than a constant q> 1. Hence we use the idea, 
which has been used first by Thorin in the proof of a particular result 
of the same kind [10, pp. 31-35], of writing ƒ (s) = Gk(z). By G we shall 
denote here a polynomial £o+£i*+ • • • +%Pzp and by k the smallest 
integer such that k/ai^2t k/a^l. We can then apply the method 
just indicated of approximation of the integral by a finite sum, and 
Thorin's extension of M. Riesz's convexity theorem is essential here, 
because the xj become functions <£y(£o, • • • , £P) of the variables 
Jo, • • • * ?P which are homogeneous and of degree k (and thus the 
function of the £'s and y's is no longer bilinear). 

The inequality once proved for f:=Gk(z)f G being a polynomial, 
remains true when ƒ is any function of the class Hlla having no zeros 
for | z | < 1 . One has afterwards to remember only that every fÇzHlla 

is the sum of two zero-free functions/i and / 2 of the same class, with 
\Mû2\f\,\M^\f\. 

Finally, if one writes Xh= ZJjLoajkXj (ft = 0, • • • , n) it is familiar 
that M (a, j3) is also the maximum of the ratio 
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( 1 1 x> I 1 ' 1 )*/ [ ƒ " I ƒ(««•) \"<>dej 

where y = 1 — j3. From sums of powers of linear forms we can pass to 
integrals, and the theorem of Littlewood and Paley is the consequence 
of our result applied between a =y == 1/2 and a = 7 — 1. 

The same general result is immediately applicable to the proof 
of a theorem of Hardy-Littlewood proved directly by Thorin in his 
thesis [10]. I f / ~ J 2 o c^ive, one has: 

^ h L ^ A l c i T \ f \ d d {feH)i 
V + 1 J o 

(El < l̂2)1/2 - ( ^ ƒ /*! f\id6Y (ƒ e #2); 
this means that 

[ E ^ j ^ [| c.\ {v + 1)]*'*] ' â A(a, y)(f*T\ fi11*™)" 

is valid for a = l, 7 = 1 with .4(1, l)=Ai; and for a: = 1/2, 7 = 1/2 
with -4(1/2, l /2 ) = (27r)""1/2. Hence applying our result we find that , 
if 1 ̂ zp ^ 2 , there is a constant Ap depending on p only such that 

^ ( v + l ) 2 - p P J 0 I-' » 

Of course, if 1 <p^2 (but not for p~l) this is also true when ƒ £ ! > 
and the cv are the complex Fourier coefficients of/. 

Finally, let us mention that, using his generalizations of Marcel 
Riesz's convexity theorem, Thorin, in his thesis [10], has given a new 
proof (and even an extension to several dimensions) of Hardy and 
Little wood's inequality 

1/7" dxdyl 
x - y\*-«~t 

S K(a, « ( ƒ °° I ƒ(*) \v«dx ) " ( ƒ " I g(y) \1/pdyJ 

(a + p> 1, a< 1,0 < l , / 6 X 1 / a , g G Z ^ i n C - oo, oo)). 

This proof, however, is based not only on a convexity theorem but 
also on a deep result of Marcinkiewicz in the theory of Fourier series. 
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