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A. M. MARK 

1. Introduction. We prove the following theorems: 
Let Xit X<L, - - • be independent, identically distributed random 

variables, each having mean 0 and standard deviation 1 and let 
» S A !

: = X I + X 2 + • • • ~\-Xk* 
I. If N=* [an] where 0 < a < l , then: 

lim Prob {min (SN+lf SN+h • • • , S») > |8»1'*} = Viifi) 
n—•» 

where 

I p oo r <ua1/2~/3) ( l -a)" 1 ' 2 

I I . If £(/) is continuous in 0 :g/ :£ 1 and has at most a denumerable 
set of zeros in the interval, then: 

lim Prob i— £ p{j/n)s) < jsl - F,(j9) 

where the characteristic function of Vvfji) is given by 

eWdVtifi) = (0(2*0)-»" i: 
and DÇK) is the Fredholm determinant associated with the integral 
equation 

X j min (s, t)p(t)f(t)dt = /(s). 
J o 

In the case where p(t)>0 in 0 ^t^ 1, we have 

ƒ' eMdViiP) = I I (1 - 2*{A,)-1'* 

where Xi, X2, • • • are the eigenvalues of 

g"(s) + P(s)g(s) = 0 

subject to the conditions 
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g(P) = g'd) = o. 

We also prove the following: 
I I I . LetXni, Xn2, • • • , Xnn be independent, identically distributed 

random variables, each having standard deviation 1 and mean fxn 

where limnH>00 nll2fxn = u. Let Snj = Xni+Xn2+ • • • +Xny. Then: 

lim Prob { — Ê s » , < / s } = 7,(j8) 

where the characteristic function F3(/3) is given by 

f00 f /* 2 / t anh( -2 iÖ 1 / 2 \ ) 
J ^ emVtifi) = ( s e c h ( - 2 « ) ^ / » c x p { y ( ( -2 f t ) i / ' 7 / ' 

The pattern of proof is essentially the same for the three theorems. 
We show first that the limiting distribution, if it exists, is inde
pendent of the distribution of the X's. A particular distribution is 
then chosen so that the limiting distribution can be conveniently 
calculated. This method was first used in a joint paper by Erdös and 
Kac [ l ] . 1 Since our independence proofs differ only slightly from 
those in the latter paper, the details will not be given here.2 More
over, it will easily be seen that the requirement of identically dis
tributed variables may be relaxed since it is only essential that the 
central limit theorem apply to the variables in question. 

From I, the following corollary is obtained: 

lim Prob {min (SN+i, • • • , Sn) > 0} = — sin""1 a112. 
n—>eo 7T 

If, in addition, we let M = [yn], 0<y<a<l, it can be shown by a 
method similar to the one used in proving I that 

lim lim Prob {min (SM+I, SM+2, ' • • > SN) > 0 J | Sn \ < wnlf2} 

i . , / Y ( I - « ) \ 1 / 2 

= — sin-11 j . 
7T \a(l — y)/ 

These special results had previously been derived by Levy [3]. As 
stated, his theorems apply only to normally distributed Xi although 
he seems to have been aware that his theorems were true for the 
general class of distributions considered here. 

Theorems II and III are generalizations of the third theorem in 
[ l ] . The calculation made in II for the special case where p(t)>0 is 
similar to that made by Kac and Siegert [4, pp. 392-393]. There is a 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
2 The details may also be seen in another paper by the same authors [2]. 
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footnote in the latter paper that in the general case we must resort 
to the Fredholm determinant but the details are not carried out there. 
The results of the special case of positive p{t) in II and also III had 
been obtained by Cameron and Martin [5, 6] in their work on 
Wiener space. Their results are equivalent to ours for the case of 
normally distributed X's. 

The theorems can easily be interpreted in terms of a one-dimen-
sional random walk. Theorems I and II would apply to a free particle 
and III would apply to a particle in a constant force field. 

2. Proof of I. Let 

Pn(fi) = Prob {min (SV+i, • • • , & ) > W*}. 

Let k be a positive integer and let 

nt=N+ [(» - N)j/k)} (J = 1, 2, • • • , *) 
and 

Pn,h(P) = Prob {min (Snv Snv • • • , Snie) > fl**1'2}. 

Then, for any e > 0 , we have 

Pn.k(P+e) ~ 1/kt* < Pn(P) < Pn.k(P). 

Letting n—»oo and using the multidimensional central limit theorem, 
we have 

Prob {min (Rlf R2, • • • , Rk) > (0 + e)£1/2} - 1/Jte1 

(1) é Hm inf Pn(ff) g lim sup Pn(fi) 
n—>*> n—><x> 

^ Prob {min (Rh • • • , Rk) > pk1*2} 
where 

S i - (1 + (* - l)*)1 '*?!, 

Ri = Xx + (1 - a)*/2(G2 + G3 + • • • + Gt) (j è 2) 

and Gi, G2, • • • are independent, normally distributed random vari
ables each with mean 0 and standard deviation 1. 

We now consider the particular case in which Xi, X2, • • • are in
dependent random variables such that 

Prob {Xj = 1} = {Prob Xt = - l} = 1/2 

for each j . We next obtain estimates on P(n, I) for large n where 

P{n% Ï) = Prob {min (Sh 52, • • • , £*) > - /} 

and I is an integer. For Z>0, we make use of a reflection argument to 
show that 



888 A. M. MARK [October 

Prob {Si > - lt S2 > - / , • • • , S«-l > ~l,Sn~ ~l + p} 

= Prob {Sn = -1 + p} - Prob {Sn = - ; - p) 

and it will easily follow that 

i 

P(nt Ï) = 2 £ Prob {Sn = j] - Prob {Sn = 0} - Prob {Sw = *} . 

We have 

Prob { 5 n = - l + p] 

= Prob {5i > - / , . - • , Sn-i > - h Sn = - I + ƒ>} 

+ Prob {Sn = — / + p with 5,- = — / for at least one i < n). 

We consider the third probability in this equality and we suppose 
that Si is the first such sum for which 5»- = —/. Since 

Prob {Xi+i + Xi+2 + • • • + Xn = p] 

« Prob { X i + x + . . . + X n = - # } , 

we have 

Prob {Sn = —/ + ƒ> with Si = — I for at least one i < n} 

= Prob {5n = - I - />} 

and the desired result follows immediately. 
We now make use of the following well known result [7, p. 135]: 

r > f(2/i 
P r o b { 5 . - y | - | W

o 

(2/imyt2e-i2t2n + A if n = y (mod 2), 

otherwise 

where | A j <3n~3/2 provided that n è 100. Thus, for sufficiently large w» 
we have3 

i / 2 V 2 

P(», 0 — 223*1 — 1 <r>2'2» + ei (/ > 0) 
,«o \jm/ 

where \ex\ <8ln-v2+2n~112. Since 

P(», 0) - P(n - 1, l ) /2 
we have 

P(n, 0) < 7**-1'2. 

Moreover, since 
Prob {5i > - /} = 0 (/ £ - 1), 

8 An asterisk on a summation sign will indicate that only those values of the index 
of summation are taken for which the index and the upper limit are congruent 
modulo 2. 
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we have 

P(n, 0 = 0 (/ < 0). 

Now 

N 

P*(P) = Z p^ob {SN = /, min (SN+1 - 5V, SN+2 - SN, • • • , 

5 n - SN) > - I + pn"*} 
N 

- £ Prob {SN = l}P(tn, l~ p) 
l~-N 

where tn = n — N and p = [fin112]. Using the previous approximations, 
we then have 

1 N ( l~~p } 
(2) P n ( 0 ) = — Y^*l2N~li*e~l2i™Y?l™~ll^2i*™\ + € 2 

IT J»_p V 3=0 / 

where |e2 | <Cw~1/2, C being bounded independently of n. The sums 
in (2) correspond to Riemann sums and, letting w~-»oo, we have 

I r oo ^ (w«1/2~/S) (1~«) - 1 / 2 

lim Pn(0) = — I e-«2'2du I e-tiHt = Fi(/3). 

The proof is now easily completed. Applying our particular result 
(1) we have 

Prob {min (Rlf P2 , • • • , Rk) >( /3 + e)k"* } - l/ke> :g Fi(0) 

= Prob {min (R1} R2t • • • , £*) > jSJfe1'2}. 

Replacing j8 by /3 — e, we have 

Prob {min (Rh R2, • • • , X*) > /3&1'2} - l/fee2 ^ Fi(/J - c) 

and replacing /3 by /3+e in (3), we have 

Fi(j8 + e) ^ Prob {min (&, • • • , Rk) > (0 + e)^/2} 

and applying these results to (1), we find that for the general case 

Vi(P + « ) - — £ Um inf Pn(j8) = lim sup Pn(/3) 

â FiOS - c) + 1/t». 

The proof is completed by letting k~->oo while e is held fixed and then 
letting €-*0 and using the fact that Vi((3) is continuous. The corollary 
follows by calculating Fi(0) explicitly. 

3. Proof of II. Letting 



890 A. M. MARK [October 

PM = Prob i— i : p(j/n)s) < À , 

and again following the method of Erdös and Kac, we find, for any 
€>0 and all positive integers kf that 

Prob {^2>07A)*/ </»-«} ~ W 1 ' 2 

(4) g lim inf Pn(fi) ^ lim sup Pn(fi) 

^ Prob {—£ P0'/*)*5 < /» + «} + <7«*»'«, 

where C is a constant, 2?y = Gi+C?2+ • • • +Gy, and Gi, G2, • • • are 
independent, normally distributed random variables each having 
mean 0 and standard deviation 1. The remainder of the proof is 
essentially a calculation of lim^-oo #&(£) where <ƒ>&(£) is the character
istic function of the distribution of (l/k2) 2D*=i PÜ/k)R*-

We consider first the case in which p(t) > 0 , O ^ / ^ l , and for con
venience we let pj = P(j/k). We then have 

*»(€) = (2TT)-*'2 f •". f exp {**/*•£ f / £ *Y 

T^ Xj> dx\ • • • dxk 
2 t* ) 

(5) 

_ (2„>-.<. ƒ._..ƒ « p { - g „ „ . - - „ 
l ^ ) 

~ — Z) (y3- - y / - i ) 7 rfyi • • • rfy*. 

Let 4̂ = ((dij)) be the matrix of the quadratic form 

y 1 + 2D (y/ - y/-i)2 

and let the transformation Zj~p)/2yj take 4̂ into 5 = ((&»/)), so tha t 
bii={pip])~l,*<*>ij- We then have 

**(© = (2*Yh,KpiP> • • • i>*)-1/2 ƒ • •"• ƒ exp | ^ £ «î 

1 * ) 
— - - 2D &<ƒ«<*ƒ> <fei • • • dzk, 

2 <,,«i ; 
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and if we denote the eigenvalues of B by /-tu, /*2&, • • • , M*fc> it follows 
easily that 

**(0 = n{^(w--^l 
-1/2 

k2Jj 
Since #*(0) = 1, we have 

(6) **(ö = n{i--7r=-> • 

Now B^C-1 where C = = ( ( ^ 1 / 2 ^ / 2 ) ) and ((*,)) = ((min {*, j})) 
— A~l. I t then follows that l//xi*, I//X2*, • • • , 1/M** are the eigen
values of C. From Hubert 's approach to Fredholm's theory [8, p. 
14], it follows tha t 1/iVi**-^/ where Xi, X2, • • • are the eigenvalues 
of the integral equation 

ƒ. 
1(M*))112 min (*, t)(p(t)yi*f(t)dt = *ƒ(*). 

Letting g(s) =f(s)(p(s))~~112, we obtain 

ƒ. 
1 
min (j, t)p{t)g{t)dt = X*(5) 

0 

and differentiating twice we find that 

(7) \g"(s) + p(s)g(s) = 0. 

Thus Xi, X2, • • • are the eigenvalues of (7), subject to the conditions 

«(0) = g'(l) = 0 

which arise from the integral equation. Since min (s, t) is a positive 
definite kernel, it follows that (p(s))112 min (s, t)(p(t))112 is positive 
definite and by Mercer's theorem we have X/>0 for each j and also 
X X 1 \f converges. Hence we may pass to the limit in (6) and we 
have 

(8) lim MO = ft (1 - 2«X;)-i/2, 

the convergence being uniform in every finite ^-interval. 
We now remove the restriction that p(t) be positive and we require 

tha t £(0 have a most a denumerable set of zeros in the unit interval. 
Moreover, using a continuity argument, it is easily seen that we need 
only consider the case where the zeros of p(t) are irrational. Letting 
u~2i£/k2, it follows from (5) that 
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MQ = (2*-)-*'* ƒ • • • ƒ exp j - - ( £ a,,*?/ 

«fyi • • • «ty*. 

Letting 

/ = 

f on — Upi Û12 

#21 #22 — Up2 d2k 

it follows that 

**(€)» I/h171 . 
Letting i î = ((&#)) where hij — a^lpi, we have 

| / | = W 2 ' " #* | J5T — ul\, 

where I is the identity matrix. Moreover, if we denote the eigenvalues 
of Xi&, X2&, • • • , Xftfc, it follows that the eigenvalues of H-~uI are 
Xi* — wX2jb — w, • • • , \kk — u. I t then follows easily that 

#*(© = n{^(x^-^)}-i/2. 

Using the fact that <£&(0) = 1, we have 

(9) ^)-n(i--I~) . 

Moreover, it is clear that 1/Xu, 1/X2&, • • • , 1A** are the eigen
values of the matrix G = ((ga)) = H~~l where 

gij = #,min (f, y) = #07*) m i n (h j)-

To evaluate Hm*-» <£*(£) we again make use of Hubert 's considera
tions. We shall be concerned with the integral equation 

(10) f(s) - X f min (s, t)p(t)f(t)dt = 0 
J 0 

and for convenience we write K(s, / )=min (s, /) p(i). Now let Kij 
= K(i/kfj/k)=min (i, j)pj/k. Following Hilbert [8, p. 9] we define 
Dk(l) to be the determinant 
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1 — IKii — IK\% * * m 

— IK21 1 — IK22 ' ' • 

-IK, Ai lKk2 

— IKik 

— lK.2k 

1 — IKhk 

and it follows that 

( i i ) lim Dk(\/k) = D(\) 
t—too 

where D(X) is the Fredholm determinant associated with (10) and 
is defined over the entire complex X-plane. Moreover, the conver
gence is uniform in every bounded region of the complex plane. I t is 
easily seen that 

Dk(t) = | / - — G | 
I k I 

and since the eigenvalues of G are l/Xu, I/X2*, • • • , 1 A**> *t easily 
follows that 

k 

2~l \ kKjk/ 

and from (9) we have <£*(£) = (Dk(2i%/k))~1/2. Letting k~»<*> and using 
(11) we have 

(12) lim MO = (Z>(2*-£))-1/2. 
fc—• » 

Since |<M£)| g l for all & and for all real £, it follows that D(2i£)9*0 
and limfc-oo <£&(£) is defined for all real £. Furthermore, it is easily seen 
that (12) is equivalent to (8) when p(t)>0. In the general case it 
follows readily that (10) is equivalent to (7) and it is known that 
(7) will have eigenvalues even if we remove the restriction that p(t) be 
positive. However, in the general case we are unable to pass to the 
limit termwise as in (8) since our integral equation would not have 
a positive definite kernel. Therefore, we must resort to the Fredholm 
determinant. 

As yet we have not shown the existence of the limiting distribution 
in the general case. We first consider the special case of normally 
distributed random variables. We have shown that <£*(£) approaches 
a certain function <j>(£) uniformly in every finite ij-interval as k be
comes infinite. Applying the continuity theorem for Fourier-Stieltjes 
transforms, we see that there exists a distribution function V2W) 
such that 

lim Prob £ i i ; p{j/k)R) < | 8 U F 1 m 
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at every continuity point of F2G8). Furthermore, we have 

For p(t) >0, we have 

I *tt) I — Ô I 1 — 2fSX,|-i/« ^ fill - 2^Xy|"1/2 

since |l—2i£Xy| g£l. Taking iV^4, we see that |<£(£)| is integrable 
over ( — 00, 00 ) and it is evident from the inversion formula for 
Fourier transforms that V2G8) must be continuous at all points. The 
theorem then follows from (4). In the general case, however, we are 
unable to show that FiGS) is continuous everywhere and the theorem 
holds only at the continuity points of Vï(f$). 

4. Proof of III. Letting 

Pn08) = Prob I—£,&<?], 

we find, for any €>0 and for all positive integers k, that 

Prob j — S R\f < p - X - C/ekW 

S lim inf P»(/3) g lim sup JPn(/3) 
(13) n—xx> n-*» 

g Prob i— £ R)U < fi + X + C/e&i* 
U 2 ?=i ; 

where C is a constant, Rkj=sGhi+Gk2+ • • • +G*y, and G*i, • • • , Gkj 
are independent, normally distributed random variables each hav
ing mean /xfe~1/2 and standard deviation 1. We now compute 
lim*.».» $*(£) where <£*(£) is the characteristic function of the dis
tribution of 

1 * 2 

— X) Rkj-
k2 j-i 

We then have 

*.(0-(2.)-/._../«p§È(tIi)} 

•exp J Ê (*/ - M^~1/2)2}^i - - - dxk 
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and making the substitution yj= 2 < - i x< w e have 

«,«)-(2.)-»W"/._r./exp{^ + |g4 

•exp | - — y\ - — Ë (y? ~ y/-i)*|rfyi • • • <*y*-

We shall make use of matrices again and we shall denote the transpose 
of a matrix by a superscript "TV' Let 

yi 

y2 

Ly*J 

and / 

r 0 
0 

U*"1/fJ 
y and / being column matrices each with k rows. Furthermore, let A 
be the &X& matrix of the quadratic form 

yi + H bi - y*-i) 
;=2 

I t then follows that 

(14) 

**({) = (2T)-*i*f>*i*f-"- ƒ 

( # 1 ) 
•exp <— yTy yTAy + tTy>dy\ • • • dy*. 

Let A have eigenvalues Xi*, X2&, • • • , X** and let C be an orthogonal 
matrix such that 

CTAC = D, 

where D is the diagonal matrix 

"Xi* 0 1 

Let 
LO A&fcJ 

Z\ 

Z2 

Z = 

LZk J 



896 A. M. MARK [October 

and applying the transformation y = Cz to (14) we have 

**(*) = (27r)-fc/2eV/2j.r. ƒ 

(f{ 1 ) 
•exp < — zTz zTDz + uTz>dz\ • • • dzu, 

U 2 2 J 
where 

LUkJ 

CTt. 

We may now separate variables in the last integral and it follows 
easily that 

•expl-^+iJ: u) 1. 
I 2 2 ^ Xjfc - UW?) 

We define Zlli in the plane with the negative real axis removed and 
satisfying the condition that Z1 '2 be positive for real and positive Z. 
Since 4>h(0) = 1 for any /*, we consider the case ju = 0 and we find tha t 
AifcX:» • • • A» = l . We then have 

Let 

Î - E 

2 

where 

a = - 2*V&2 

and it readily follows that 

q = tT(D + aI)-H 

where I is the identity matrix. We then find that 

q = tT{A + aI)~H 

and letting 

B = (A + a / ) " 1 = ((btd) 
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We then have 

- *»-{H(-5r-{ï(T-o}-
We wish to let k—»«> in (15). I t is known [l, p. 299] that 

Km U I 1 - r 4 ) = (sech ( - 2^)1/2)1/2 

(16) 

and the convergence is uniform in every finite ^-interval. Hence we 
need only consider lim*.^ bkh/k. Let F~A+aI=((fij)) where 
a— —20;/k2 and it readily follows that 

hk = \Fkk\/\F\ 

where | F\ is the determinant of F and | Fkh\ is the co-factor of ƒ**. 
To evaluate these determinants we make use of the following well 
known result: 

Let 
1 a 0 

. a 1 
Dm(a) « 

. . a 

0 * a 1 

where m is the order of the determinant. If # 2 T * 1 / 4 , we have 

Dm(a) = 

m— 1 m—1 
?2 

?2 

where ri and r^ are the roots of x2—x+a2=*0. 
We shall be interested in Dm(a) as ra—»oo and a2-->l/4 and we shall 

find it more convenient to use Gm{a) where 

ro-l m - 1 
r2 Gm(a) = 2 - = 2<*Dm(o). ê 

f l - ' 2 

Since F is the kXk matrix 

-2 + a - 1 0 1 

- 1 

L 0 

2 + a 

2 + a 

- 1 

- 1 

1 + aJ 
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where 

a\ = 1 + «, #2 = 2 + «, a = — 1/&2. 

Expanding the determinant in (17) by the last row, we find that 

fe-2 
#2 

(a1a2Gk-,i(a) — 2Gk-2(a)). 

Similarly we have 

fc-i 
I I ^ 2 

l F "l =-^Gk-lia)' 
and combining the last two equations we have 

a2Pk-i(a) 
(18) bkk = 

aid^Pk-iia) — 2Gh-2.{a) 

We next obtain estimates on Gk-i(a) and Gk-2{a) for large & and 
we shall use C to denote a number bounded independently of &. The 
various C s will not necessarily be equal. Since t\ and r2 are the roots 
of x2—x+a2 = 0t we write 

and 

where 

I t is easily seen that 

(19) 

where £1= — i%. Now 

fi = (1 + «)/2 

r2 = (1 - «)/2 

« = (1 - 4a2)1/2. 

k ¥ 

h k 

G*_i(a) = 2^(^—^) = Z (1 + €)^(1 ~ €) 
V l ~ ^ 2 / j - 1 

W 
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Letting 

Zi = (1 + €)>'-i(l - e)*"', 

it follows easily from (19) that 

1 2j(2Ç1yi* 
logZ, = - (2Ç01" - — (Si + (2£i)1/y> + / + C / ^ 

ft ft 

and 

Z, = CIW + exp | - (HO1" ~ y tti + (2?i)1/2) + j ( 2€0 1 / , | • 

Finally, we find that 

sinh (2&)1'* C 
(20) Gt-i(a) = (ft - &) L l i _ + _ . 

Since 

G*-«(«) = Ê (1 + '̂'"Kl ~ e)*-*"1 

we have 

G*-i(«) = {G*-i(«) - (1 + É)*- 1 }-
1 — € 

I t follows readily from (20) that 

sinh (2&)1" C 
(21) G*_2(a) = (ft - {0 ' X , cosh (2W1'* + T • 

Combining (18), (20), and (21), we find 

bn ^ 2(ft - ft) sinh (2{Q»V(2^1)
1/» + C/ft 

* ~ ft(2 cosh (2?!)1'2 + C/ft) 

and letting k—><x>, we have 

,. bu tanh (2€01/* 
lim = • 
»-.- ft (2&)1/f 

Letting ft—•<» in (15) and using (16), we find that 

lim MO = (sech ( - Hg)1!*)1'2 

(22) 
f«*/tanh ( - 2i£)1/2 J « Y t a n h ( - 2*Ö M 

'eXP (TV ( - 2i8"« / / 
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and the convergence is uniform in every finite ^-interval. 
The proof is completed as in the previous section by applying the 

continuity theorem for Fourier-Stieltjes transforms. Thus there 
exists a distribution function F3(j3) such that 

lim Prob {— £ R*ki < fi\ - Vzifi) 

at every continuity point of Vt(J3), Furthermore, if we let 

*(Ö - lim MO 

we have 

«(£) = femVtf). 
• / -—00 

I t is easily seen from (22) that <£(£) approaches zero exponentially as 
| £ | becomes infinite and therefore | <£(£) | is integrable over ( — oo, oo ). 
Hence Vz(f3) must be continuous at all points and the theorem fol
lows easily from (13). 
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