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Let k be a positive integer. Let x be a real, non-principal character 
(mod k) and 

A x(«) 
Ms, x) = 2^ —7-

be the corresponding L-series, which converges uniformly for 
R(s) ^ € > 0 . If it could be shown that uniformly in k there is no real 
zero of L(s, %) for 

A 

log k 

where A is a constant, then the existing theorems on the distribution 
of primes in arithmetic progressions could be greatly improved (see 
[ l ]) .1 Moreover by Hecke's Theorem (see [2]) it would follow that 
uniformly in k 

B 
X(l, X) > — — 

log k 

where B is a constant. This would be a considerable improvement 
over Siegel's Theorem (see [3]), and would lead to an improved lower 
bound for the class number of an imaginary quadratic field. 

In the present paper, we shall show that for 2 ^k^67, L(s, x) has 
no positive real zeros. By combining this information with the results 
of [ l ] , we infer very sharp estimates on the distribution of primes in 
arithmetic progressions of difference k for £ ^ 6 7 . 

The methods used for k^67 certainly will suffice for many other 
k's greater than 67. They may possibly suffice for all k, but we can 
find no proof of this.2 

In [5], S. Chowla has considered the positive real zeros of L(s, x), 
and shown that for many explicit &'s, no positive real zeros exist. 
However Chowla could not settle whether his methods would suffice 

Presented to the Society, September 1, 1949; received by the editors August 30, 
1948. 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
2 These methods have been tried on all &^227 and it has been ascertained that 

except for the cases & = 148 and £ = 163, L(s, x) has no positive real zeros for 2^k 
5^227. Cases k = 148 and k == 163 are now being studied and any results obtained about 
them will appear in the Journal of Research of the National Bureau of Standards. 
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to handle the difficult cases &=43 and £ = 67. In [ó], Heilbronn has 
shown that there exist values of k for which Chowla's methods are 
certainly inadequate. 

THEOREM 1. If xis non-principal (mod k) and x(~-l)= : l , then for 
all s 

- 2s(s + 1) • • • (s + 2a - 1) 
i ( s- x ) - S i ^ s — «•*'• - m'+2"> 

[*/2] 

• E x(»)(* - 2w)2a. 
n - l 

PROOF. For s>l, we have 

- ÇÎ x(«) 
jr-o«-i (2kN+2n)' 

t,1 / * - In \-« A 1 ^ / * - 2» Y 
= 2«E Ex(»)( l ) 

~ l t,1 r * - 2» 
= 2 'E Zx(«Kl + s 

s(s + 1) / k - In y 

2! \k(2N + 1) / 

s ( s + 1)(* + 2 ) / t - 2» y "i 
+ 3! U(2J\T + 1) / + " " ƒ 

= 2» E ^ E x(»x* - in) 
fco *'(2Ar + 1)*\k(2N+ 1) ~ i 

s(s + 1) £J ) 
+ i i £ X(M)(£ _ 2»)* + . . . } 

5 / *° / 2 V + 1 \ k~1 

= -TTTTJ E (TTT-—) )Ex(»)(*-2») 
2£s+1 \ iv=o \2i\r + 1/ / „_i 

s(s + 1) / « / 2 Y+2\ £J 
+ ' ( E ( ) )ExW(^-2«)2 + 

" ^77 (2'+1 ~ 1)f(* + 1} E x(»)(* - 2n) 
5(5 + 1) t ? 

+ 4 ( 2 | ) ^ , (2*+2 - WC* + 2 ) £ x(»)(* - 2nY + • 
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Since x is non-principal, we have k > 2 , and so if k is even, we have 
x ( [ * / 2 ] ) - x ( * / 2 ) « 0 . Now since x ( ~ l ) = l, 

£ x(»)(* - 2n)«-

[fc/2] fc-1 

= Z) X(»)(* - 2w)2« + X) xW(2w - £)2<* 
n = l n*=[fc/2]+l 

[fc/2] fc-1 

= E x(»)(* - 2/*)2« + E *(»)(* - 2(* - **))2a 

n « l n=fc--[fc/2] 

[fc/2] [fc/2] 

= Z X(»)(* - 2 )̂2« + Z # - »)(* - 2w)2« 

[ft/2] 

= 2 £ x(»)(* - 2»)2«. 
nasi 

Similarly, we prove ZS~i x W ( * — 2w)2a+1 = 0. 
Thus we infer that the equation stated is valid for s>l. 
Now since 

[fc/2] 

X xW(i-2w)2û ^ A (4 _ 2)t-, 

we see that the series on the right converges absolutely and uniformly 
for all s, and so our theorem follows by analytic continuation. 

THEOREM 2. If % is non-pnncipal (mod k) and x( — l ) 8 8 — 1, / ^ # 
/or a// 5 

" s(* + 1) " • (s + 2a) 
£(*. X) = Z — (2«+**1 - l)f (* + 2a + 1) 

[fc/2] 

The proof is similar to the proof of Theorem 1. 
Although these theorems hold for any non-principal x» we shall use 

them only for real non-principal x» We assume henceforth that x is 
real and non-principal. We let 2 M denote 

[fc/2] 

E X(»)(* - 2n)M. 

For sufficiently large M (certainly for M*zk)t the initial term 

X ( l ) (* - 2)" 
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of Sjwr dominates the remaining terms, and we infer that Sj^>0. If 
by good chance Sju è 0 for all M*£ 1, then by Theorem 1 or Theorem 2 
we infer that L(s, x) > 0 for s>0, and hence that L(st x) has no posi
tive real zeros. For £ ^ 6 7 , this happens in a majority of cases. 

When considering positive real zeros of L(s, x) it suffices to re
strict attention to primitive x's (and to the k's for which there are 
primitive x's. See [4, §125]). For primitive x's, ^M^O for M*zl for 
each k g 67 except 43 and 67. Moreover for each such k, the proof of 
2 M ^ 0 is easily accomplished by grouping the terms in groups, each 
of which is non-negative. Typical such groups are: 

I. AM-BM, where A >B. 
I I . AM-BM-C*t where A^B + C. 
I I I . AM-~BM-CM+DM, where A+D^B + C. 
For £ = 53, there occurs the group 5 1 ^ - 4 9 ^ - 4 7 ^ + 4 5 ^ - 4 3 ^ 

+ 4 1 ^ + 3 9 ^ —37^, which we show to be non-negative by writing it 
as ( 4 4 + 7 ) ^ - ( 4 4 + 5 ) M - ( 4 4 + 3 ) ^ + ( 4 4 + l ) ^ - ( 4 4 - l ) M + ( 4 4 - 3 ) ^ 
+ (44 — 5)M — (44 — 7)M, and expanding each term by the binomial 
theorem. 

For k =43 or 67, we have 2 3 < 0 , so that the series in Theorem 2 does 
not consist entirely of non-negative terms. However, we can show 
that the initial positive term outweighs the negative terms. We give 
the proof for & = 67, since the proof for £ = 4 3 is similar and easier. 

By the functional equation for L(s, x) (see [4, §128]) it follows 
that if L(s, x) has a zero p with 1/2 < p < l , then it has a zero p with 
0 < p < l / 2 . As it is known that L(s, x ) > 0 for l ^ s , it suffices to 
prove L(s, x) > 0 for 0^s<* 1/2. So we take k = 67 and 0 S s S 1 / 2 . By 
Theorem 2, 

L(s, x) = 
2*+l - 1 (st(s + 1), 

— ( 67« I 67 

3!(67)8 4(2"+» - 1) 

where now Sj* = Y%-iX(n)(67 -2n)M. For s>0, 

dx 
Us 

1 _ " 1 /•• 

5 „=1 n'+1 J i K«+l 

= AM rn+1 dx \ 

>o. 
So for s^O, st(s+1)£1. Also S1 = 67. So 
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sï(s + 1) 

For 0^5 

2*+2«+i _ i 2s 
s - < 

4«(2*+i - i) 2 - 2 -
So for 0^5^1 /2 

2*+2a+l __ I 
s g -

d f 2s 
0.11(1 - l 

<fr\2 - 2" 

2(1/2) 
— i i - i - < 0.77346. 

4«(2«+i _ i) ~ 2 - 2-1'2 

Also 

(5 + l)(s + 2) ^ (3/2)-(5/2) = 5_ 

31 = 31 8 

Since 2 3= —102,845, we infer 

a ( s + ! ) ( « + 2 ) 2 » + 3 - l 

3!(67)3 4(2»+! - 1) 
f (s + 3) S3 

5 1 
è (0.77346)f(3)(102,845) 

(2) 8 (67)3 

5 102,845 
> (0.77346) (1.20206) 

8 300,763 
> - 0.199. 

Now for J l f^l , 

SM = {(57 + 8)* - (57 + 6)M - (57 + 4)* + (57 + 2)M - 57^ 

+ (57 - 2)M - (57 - 4 ) " - (57 - 6)M + (57 - 8)^} 

+ {(43 + 4)M - (43 + 2)M - 43M - (43 - 2)M + (43 - 4)M} 

+ 37* + 35*H 
M(M - 1) , . 

> - 57MH ^•57Jlf-2{2-82- 2 6 2 - 2-4 2+2-2 2 

2 ! i > 

M(M - l)(Jf - 2)(M - 3) . 
-57 M - 4 {2-8 4 - 2-64 4! 

- 2-44 + 2-24} + • • • 

M(M - 1) . , 
_ 4 3M^ i i43 M - 2 {2-4 2 - 2-22 + 

2! l ' 
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/ 16M(M - 1)\ / 12M(M - 1)\ 
2: - 57^1 1 -1 - 43M( 1 - ) . 

\ 572 / \ 432 / 

In particular, if a^2, then 

/ 16(2a + l )2a \ 
was- 57^(1- \ 7 2

 J ) 

/ 12 (2a + l )2a \ 
- 432<"+1( 1 — 1 

V 432 / 
/ 320 \ / 240 \ 

> _ 572«+i(l ) - 4 3 2 a + 1 ( 1 J 
\ 3249/ \ 1849/ 
2929 1609 

2; - 572 a + 1 43 2 a + 1 

3249 1849 
So for 0 ^ 5 g 1/2, 

" s(s + 1) • • • (5 + 2a) 2«+2a+1 - 1 
E — — f (* +2a+ l)22a+1 
±2 (2a+l)! (67) 2 «+ 1 4 « ( 2 « + 1 - l ) V ' + 

" s(s + 1) • • • (5 + 2a) 2 s + 2 a + 1 - 1 
è - E f(« + 2a+l) 

^T2 (2a + l)!(67)2a+1 4<*(2«+1 - 1) ( 2929 1609-) 
J572a+1 _ _ _ + 4320H-I I 
I 3249 1849/ 
• s(s + 1) • • • (s + 4) 2«+2«+1 - 1 

£ - E f (5) 
^r2 5!(67)2a+1 4«(2«+1-l) ( 2929 1609) 
J 572«+i _ _ 4- 432«+i K 

(3) I 3249 1849/ 

63 » r/57\2«+1 2929 " r / 5 7 \ 2 

(0.77346)(1.03693)E 1 ( — ) 
1 a_2 l \ 6 7 / 128 ~2 (A67/ • 3249 

/43\2«+1 1609) 

63 r /57\64489 2929 
^ - — (0.77346) ( 1 . 0 3 6 9 3 K ( — j 

128 ( \ 6 7 / 1240 3249 

+ 
> - 0.638. 

Q' 43\B4489 1609^ 

2640 1849/ 
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By (1), (2), and (3), for 0 g * £ l / 2 , 

2 « + 1 - 1 , > 0.163 
L(s,x) £ — { 1 . 0 0 0 - 0 . 1 9 9 - 0 . 6 3 8 } £ è 0.0199. 

*J 67» l ' (67)1'2 

SoL(s , x ) > 0 for 0 ^ 5 . 
When x("~l) ^ —1» Theorem 2 opens up further interesting possi

bilities. When s—»0, the first term of the series is bounded away from 
zero, while the remaining terms approach zero. Thus one can always 
infer L(s, x ) > 0 for OSs^e, where € depends on k. Even for € as 
small as A /log k, this would be a very worthwhile result, as remarked 
at the beginning of the paper. 

For another possibility, let 5 = 0 and —2 in Theorem 2, and evalu
ate L(0, x) and L(~-2, x) by the functional equation. We infer the 
known result 

(4) L(l , X) - ~ 2 t 

and the result 

(5) L(3,x)=-^{k^1-X3}. 

From these follow 

f£(l , x) 6L(3, x)) 

I ir ir3 ; 

This gives 

6£(3, x) 

ÏT3 

If one could prove independently any appreciably better result, one 
could derive a sensational inequality for L ( l , x)« For instance, if one 
could prove 

4 51,(3, x) 
S 3 = - £7 / 2— = - &7/2 . 

7T3 7T8 

one could get by (6) 

M l i X) > — ' 

Another possibility is that one can perhaps derive some connec 
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tion between Si and S3. For instance, if one could prove 

S3 à - £2log *Si, 

then by (4) and (6), we could infer 

6Z(3, x) 
L(l, x) > 

7T2(1 + lOg k) 

Even this would be a very worthwhile result, since the best known at 
present is, by Siegel's Theorem, 

Ml, x) > —;— 
ke 

for € > 0 and large k. 
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