REAL ROOTS OF DIRICHLET L-SERIES

J. BARKLEY ROSSER

Let k be a positive integer. Let χ be a real, non-principal character $(\bmod k)$ and

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

be the corresponding L-series, which converges uniformly for $R(s) \geqq \epsilon>0$. If it could be shown that uniformly in k there is no real zero of $L(s, \chi)$ for

$$
s \geqq 1-\frac{A}{\log k}
$$

where A is a constant, then the existing theorems on the distribution of primes in arithmetic progressions could be greatly improved (see [1]). ${ }^{1}$ Moreover by Hecke's Theorem (see [2]) it would follow that uniformly in k

$$
L(1, \chi)>\frac{B}{\log k}
$$

where B is a constant. This would be a considerable improvement over Siegel's Theorem (see [3]), and would lead to an improved lower bound for the class number of an imaginary quadratic field.

In the present paper, we shall show that for $2 \leqq k \leqq 67, L(s, \chi)$ has no positive real zeros. By combining this information with the results of [1], we infer very sharp estimates on the distribution of primes in arithmetic progressions of difference k for $k \leqq 67$.

The methods used for $k \leqq 67$ certainly will suffice for many other k 's greater than 67 . They may possibly suffice for all k, but we can find no proof of this. ${ }^{2}$

In [5], S. Chowla has considered the positive real zeros of $L(s, \chi)$, and shown that for many explicit k 's, no positive real zeros exist. However Chowla could not settle whether his methods would suffice

[^0]to handle the difficult cases $k=43$ and $k=67$. In [6], Heilbronn has shown that there exist values of k for which Chowla's methods are certainly inadequate.

Theorem 1. If χ is non-principal $(\bmod k)$ and $\chi(-1)=1$, then for all s

$$
\begin{aligned}
& L(s, \chi)=\sum_{\alpha=1}^{\infty} \frac{2 s(s+1) \cdots(s+2 \alpha-1)}{4^{\alpha}(2 \alpha)!k^{s+2 \alpha}}\left(2^{s+2 \alpha}-1\right) \zeta(s+2 \alpha) \\
& \cdot \sum_{n=1}^{[k / 2]} \chi(n)(k-2 n)^{2 \alpha} .
\end{aligned}
$$

Proof. For $s>1$, we have

$$
\begin{aligned}
L(s, \chi)= & 2^{s} \sum_{N=0}^{\infty} \sum_{n=1}^{k-1} \frac{\chi(n)}{(2 k N+2 n)^{s}} \\
= & 2^{s} \sum_{N=0}^{\infty} \frac{1}{k^{s}(2 N+1)^{s}} \sum_{n=1}^{k-1} \chi(n)\left(1-\frac{k-2 n}{k(2 N+1)}\right)^{-s} \\
= & 2^{s} \sum_{N=0}^{\infty} \frac{1}{k^{s}(2 N+1)^{s}} \sum_{n=1}^{k-1} \chi(n)\left\{1+s \frac{k-2 n}{k(2 N+1)}\right. \\
& +\frac{s(s+1)}{2!}\left(\frac{k-2 n}{k(2 N+1)}\right)^{2} \\
& \left.+\frac{s(s+1)(s+2)}{3!}\left(\frac{k-2 n}{k(2 N+1)}\right)^{3}+\cdots\right\} \\
= & 2^{s} \sum_{N=0}^{\infty} \frac{1}{k^{s}(2 N+1)^{s}}\left\{\frac{s(s+1)}{2!k^{2}(2 N+1)^{2}} \sum_{n=1}^{k-1} \chi(n)(k-2 n)^{2}+\cdots\right\} \\
= & \frac{s}{2 k^{s+1}}\left(\sum _ { N = 0 } ^ { \infty } \left(\frac{2}{2 N+1} \sum_{n=1}^{k-1} \chi(n)(k-2 n)\right.\right. \\
& +\frac{s(s+1)}{4(2!) k^{s+2}}\left(\sum _ { N = 0 } ^ { \infty } \left(\frac{2}{2 N+1} \sum_{n=1}^{k-1} \chi(n)(k-2 n)\right.\right. \\
= & \frac{s}{2 k^{s+1}}\left(2^{s+1}-1\right) \zeta(s+1) \sum_{n=1}^{k-1} \chi(n)(k-2 n) \\
& +\frac{s(s+1)}{4(2!) k^{s+2}}\left(2^{s+2}-1\right) \zeta(s+2) \sum_{n=1}^{k-1} \chi(n)(k-2 n)^{2}+\cdots
\end{aligned}
$$

Since χ is non-principal, we have $k>2$, and so if k is even, we have $\chi([k / 2])=\chi(k / 2)=0$. Now since $\chi(-1)=1$,

$$
\begin{aligned}
\sum_{n=1}^{k-1} \chi(n)(k- & 2 n)^{2 \alpha} \\
& =\sum_{n=1}^{[k / 2]} \chi(n)(k-2 n)^{2 \alpha}+\sum_{n=[k / 2]+1}^{k-1} \chi(n)(2 n-k)^{2 \alpha} \\
& =\sum_{n=1}^{[k / 2]} \chi(n)(k-2 n)^{2 \alpha}+\sum_{n=k-[k / 2]}^{k-1} \chi(n)(k-2(k-n))^{2 \alpha} \\
& =\sum_{n=1}^{[k / 2]} \chi(n)(k-2 n)^{2 \alpha}+\sum_{n=1}^{[k / 2]} \chi(k-n)(k-2 n)^{2 \alpha} \\
& =2 \sum_{n=1}^{[k / 2]} \chi(n)(k-2 n)^{2 \alpha} .
\end{aligned}
$$

Similarly, we prove $\sum_{n=1}^{k-1} \chi(n)(k-2 n)^{2 \alpha+1}=0$.
Thus we infer that the equation stated is valid for $s>1$.
Now since

$$
\left|\sum_{n=1}^{[k / 2]} \chi(n)(k-2 n)^{2 \alpha}\right| \leqq \frac{k}{2}(k-2)^{2 \alpha}
$$

we see that the series on the right converges absolutely and uniformly for all s, and so our theorem follows by analytic continuation.

Theorem 2. If χ is non-principal $(\bmod k)$ and $\chi(-1)=-1$, then for all s

$$
\begin{aligned}
L(s, \chi)=\sum_{\alpha=0}^{\infty} \frac{s(s+1) \cdots(s+2 \alpha)}{4^{\alpha}(2 \alpha+1)!k^{s+2 \alpha+1}}\left(2^{s+2 \alpha+1}\right. & -1) \zeta(s+2 \alpha+1) \\
& \cdot \sum_{n=1}^{[k / 2]} \chi(n)(k-2 n)^{2 \alpha+1}
\end{aligned}
$$

The proof is similar to the proof of Theorem 1.
Although these theorems hold for any non-principal χ, we shall use them only for real non-principal χ. We assume henceforth that χ is real and non-principal. We let Σ_{M} denote

$$
\sum_{n=1}^{[k / 2]} \chi(n)(k-2 n)^{M}
$$

For sufficiently large M (certainly for $M \geqq k$), the initial term

$$
\chi(1)(k-2)^{M}
$$

of Σ_{M} dominates the remaining terms, and we infer that $\Sigma_{M}>0$. If by good chance $\Sigma_{M} \geqq 0$ for all $M \geqq 1$, then by Theorem 1 or Theorem 2 we infer that $L(s, \chi)>0$ for $s>0$, and hence that $L(s, \chi)$ has no positive real zeros. For $k \leqq 67$, this happens in a majority of cases.

When considering positive real zeros of $L(s, \chi)$ it suffices to restrict attention to primitive χ 's (and to the k 's for which there are primitive χ 's. See $[4, \S 125]$). For primitive χ 's, $\Sigma_{M} \geqq 0$ for $M \geqq 1$ for each $k \leqq 67$ except 43 and 67 . Moreover for each such k, the proof of $\Sigma_{M} \geqq 0$ is easily accomplished by grouping the terms in groups, each of which is non-negative. Typical such groups are:
I. $A^{M}-B^{M}$, where $A>B$.
II. $A^{M}-B^{M}-C^{M}$, where $A \geqq B+C$.
III. $A^{M}-B^{M}-C^{M}+D^{M}$, where $A+D \geqq B+C$.

For $k=53$, there occurs the group $51^{M}-49^{M}-47^{M}+45^{M}-43^{M}$ $+41^{M}+39^{M}-37^{M}$, which we show to be non-negative by writing it as $(44+7)^{M}-(44+5)^{M}-(44+3)^{M}+(44+1)^{M}-(44-1)^{M}+(44-3)^{M}$ $+(44-5)^{M}-(44-7)^{M}$, and expanding each term by the binomial theorem.

For $k=43$ or 67 , we have $\Sigma_{3}<0$, so that the series in Theorem 2 does not consist entirely of non-negative terms. However, we can show that the initial positive term outweighs the negative terms. We give the proof for $k=67$, since the proof for $k=43$ is similar and easier.

By the functional equation for $L(s, \chi)$ (see [4, §128]) it follows that if $L(s, \chi)$ has a zero ρ with $1 / 2<\rho<1$, then it has a zero ρ with $0<\rho<1 / 2$. As it is known that $L(s, \chi)>0$ for $1 \leqq s$, it suffices to prove $L(s, \chi)>0$ for $0 \leqq s \leqq 1 / 2$. So we take $k=67$ and $0 \leqq s \leqq 1 / 2$. By Theorem 2,

$$
\begin{aligned}
L(s, \chi)= & \frac{2^{s+1}-1}{67^{s}}\left\{\frac{s \zeta(s+1)}{67} \Sigma_{1}\right. \\
& \left.+\frac{s(s+1)(s+2)}{3!(67)^{3}} \frac{2^{s+3}-1}{4\left(2^{s+1}-1\right)} \zeta(s+3) \Sigma_{3}+\cdots\right\}
\end{aligned}
$$

where now $\Sigma_{M}=\sum_{n=1}^{33} \chi(n)(67-2 n)^{M}$. For $s>0$,

$$
\begin{aligned}
\zeta(s+1)-\frac{1}{s} & =\sum_{n=1}^{\infty} \frac{1}{n^{s+1}}-\int_{1}^{\infty} \frac{d x}{x^{s+1}} \\
& =\sum_{n=1}^{\infty}\left\{\frac{1}{n^{s+1}}-\int_{n}^{n+1} \frac{d x}{x^{s+1}}\right\} \\
& >0
\end{aligned}
$$

So for $s \geqq 0, s \zeta(s+1) \geqq 1$. Also $\Sigma_{1}=67$. So

$$
\begin{equation*}
\frac{s \zeta(s+1)}{67} \Sigma_{1} \geqq 1 \tag{1}
\end{equation*}
$$

For $0 \leqq s$

$$
s \frac{2^{s+2 \alpha+1}-1}{4^{\alpha}\left(2^{s+1}-1\right)}<\frac{2 s}{2-2^{-s}} \quad \text { and } \quad \frac{d}{d s}\left(\frac{2 s}{2-2^{-s}}\right)>0 .
$$

So for $0 \leqq s \leqq 1 / 2$

$$
s \frac{2^{s+2 \alpha+1}-1}{4^{\alpha}\left(2^{s+1}-1\right)} \leqq \frac{2(1 / 2)}{2-2^{-1 / 2}}<0.77346
$$

Also

$$
\frac{(s+1)(s+2)}{3!} \leqq \frac{(3 / 2) \cdot(5 / 2)}{3!}=\frac{5}{8}
$$

Since $\Sigma_{3}=-102,845$, we infer

$$
\frac{s(s+1)(s+2)}{3!(67)^{3}} \frac{2^{s+3}-1}{4\left(2^{s+1}-1\right)} \zeta(s+3) \Sigma_{3}
$$

(2)

$$
\begin{aligned}
& \geqq-\frac{5}{8} \frac{1}{(67)^{3}}(0.77346) \zeta(3)(102,845) \\
& \geqq-\frac{5}{8}(0.77346)(1.20206) \frac{102,845}{300,763} \\
& >-0.199
\end{aligned}
$$

Now for $M \geqq 1$,

$$
\begin{aligned}
\Sigma_{M}= & \left\{(57+8)^{M}-(57+6)^{M}-(57+4)^{M}+(57+2)^{M}-57^{M}\right. \\
& \left.+(57-2)^{M}-(57-4)^{M}-(57-6)^{M}+(57-8)^{M}\right\} \\
& +\left\{(43+4)^{M}-(43+2)^{M}-43^{M}-(43-2)^{M}+(43-4)^{M}\right\} \\
& +37^{M}+35^{M}+\cdots \\
> & -57^{M}+\frac{M(M-1)}{2!} 57^{M-2}\left\{2 \cdot 8^{2}-2 \cdot 6^{2}-2 \cdot 4^{2}+2 \cdot 2^{2}\right\} \\
& +\frac{M(M-1)(M-2)(M-3)}{4!} 57^{M-4}\left\{2 \cdot 8^{4}-2 \cdot 6^{4}\right. \\
& \left.-2 \cdot 4^{4}+2 \cdot 2^{4}\right\}+\cdots \\
& -43^{M}+\frac{M(M-1)}{2!} 43^{M-2}\left\{2 \cdot 4^{2}-2 \cdot 2^{2}\right\}+\cdots
\end{aligned}
$$

$$
\geqq-57^{M}\left(1-\frac{16 M(M-1)}{57^{2}}\right)-43^{M}\left(1-\frac{12 M(M-1)}{43^{2}}\right) .
$$

In particular, if $\alpha \geqq 2$, then

$$
\begin{aligned}
\Sigma_{2 \alpha+1} \geqq & -57^{2 \alpha+1}\left(1-\frac{16(2 \alpha+1) 2 \alpha}{57^{2}}\right) \\
& -43^{2 \alpha+1}\left(1-\frac{12(2 \alpha+1) 2 \alpha}{43^{2}}\right) \\
\geqq & -57^{2 \alpha+1}\left(1-\frac{320}{3249}\right)-43^{2 \alpha+1}\left(1-\frac{240}{1849}\right) \\
\geqq & -57^{2 \alpha+1} \frac{2929}{3249}-43^{2 \alpha+1} \frac{1609}{1849} .
\end{aligned}
$$

So for $0 \leqq s \leqq 1 / 2$,

$$
\begin{aligned}
& \sum_{\alpha=2}^{\infty} \frac{s(s+1) \cdots(s+2 \alpha)}{(2 \alpha+1)!(67)^{2 \alpha+1}} \frac{2^{s+2 \alpha+1}-1}{4^{\alpha}\left(2^{s+1}-1\right)} \zeta(s+2 \alpha+1) \Sigma_{2 \alpha+1} \\
& \geqq-\sum_{\alpha=2}^{\infty} \frac{s(s+1) \cdots(s+2 \alpha)}{(2 \alpha+1)!(67)^{2 \alpha+1}} \frac{2^{s+2 \alpha+1}-1}{4^{\alpha}\left(2^{s+1}-1\right)} \zeta(s+2 \alpha+1) \\
& \cdot\left\{57^{2 \alpha+1} \frac{2929}{3249}+43^{2 \alpha+1} \frac{1609}{1849}\right\} \\
& \geqq-\sum_{\alpha=2}^{\infty} \frac{s(s+1) \cdots(s+4)}{5!(67)^{2 \alpha+1}} \frac{2^{s+2 \alpha+1}-1}{4^{\alpha}\left(2^{s+1}-1\right)} \zeta(5) \\
& \cdot\left\{57^{2 \alpha+1} \frac{2929}{3249}+43^{2 \alpha+1} \frac{1609}{1849}\right\} \\
& \geqq-\frac{63}{128}(0.77346)(1.03693) \sum_{\alpha=2}^{\infty}\left\{\left(\frac{57}{67}\right)^{2 \alpha+1} \cdot \frac{2929}{3249}\right. \\
&\left.+\left(\frac{43}{67}\right)^{2 \alpha+1} \frac{1609}{1849}\right\} \\
& \geqq-\frac{63}{128}(0.77346)(1.03693)\left\{\left(\frac{57}{67}\right)^{5} \frac{4489}{1240} \frac{2929}{3249}\right. \\
&\left.+\left(\frac{43}{67}\right)^{5} \frac{4489}{2640} \frac{1609}{1849}\right\} \\
&>-0.638 .
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \text { By (1), (2), and (3), for } 0 \leqq s \leqq 1 / 2 \\
& L(s, \chi) \geqq \frac{2^{s+1}-1}{67^{8}}\{1.000-0.199-0.638\} \geqq \frac{0.163}{(67)^{1 / 2}} \geqq 0.0199
\end{aligned}
$$

So $L(s, \chi)>0$ for $0 \leqq s$.
When $\chi(-1)=-1$, Theorem 2 opens up further interesting possibilities. When $s \rightarrow 0$, the first term of the series is bounded away from zero, while the remaining terms approach zero. Thus one can always infer $L(s, \chi)>0$ for $0 \leqq s \leqq \epsilon$, where ϵ depends on k. Even for ϵ as small as $A / \log k$, this would be a very worthwhile result, as remarked at the beginning of the paper.

For another possibility, let $s=0$ and -2 in Theorem 2, and evaluate $L(0, \chi)$ and $L(-2, \chi)$ by the functional equation. We infer the known result

$$
\begin{equation*}
L(1, \chi)=\frac{\pi}{k^{3 / 2}} \Sigma_{1} \tag{4}
\end{equation*}
$$

and the result

$$
\begin{equation*}
L(3, \chi)=\frac{\pi^{3}}{6 k^{7 / 2}}\left\{k^{2} \Sigma_{1}-\Sigma_{3}\right\} \tag{5}
\end{equation*}
$$

From these follow

$$
\begin{equation*}
\Sigma_{3}=k^{7 / 2}\left\{\frac{L(1, \chi)}{\pi}-\frac{6 L(3, \chi)}{\pi^{3}}\right\} \tag{6}
\end{equation*}
$$

This gives

$$
\Sigma_{3} \geqq-k^{7 / 2} \frac{6 L(3, \chi)}{\pi^{3}}
$$

If one could prove independently any appreciably better result, one could derive a sensational inequality for $L(1, \chi)$. For instance, if one could prove

$$
\Sigma_{3} \geqq-k^{7 / 2} \frac{4}{\pi^{3}} \geqq-k^{7 / 2} \frac{5 L(3, \chi)}{\pi^{3}}
$$

one could get by (6)

$$
L(1, \chi)>\frac{L(3, \chi)}{\pi^{2}}
$$

Another possibility is that one can perhaps derive some connec-
tion between Σ_{1} and Σ_{3}. For instance, if one could prove

$$
\Sigma_{3} \geqq-k^{2} \log k \Sigma_{1},
$$

then by (4) and (6), we could infer

$$
L(1, \chi)>\frac{6 L(3, \chi)}{\pi^{2}(1+\log k)}
$$

Even this would be a very worthwhile result, since the best known at present is, by Siegel's Theorem,

$$
L(1, \chi)>\frac{L(3, \chi)}{k^{\epsilon}}
$$

for $\epsilon>0$ and large k.

Bibliography

1. A. Page, On the number of primes in an arithmetic progression, Proc. London Math. Soc. (2) vol. 39 (1935) pp. 116-141.
2. E. Landau, Über imagind̈rquadratische Zahlkörper mit gleicher Klassenzahl, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1918, pp. 277284; Über die Klassenzahl imaginärquadratischer Zahlkörper, ibid. pp. 285-295.
3. C. L. Siegel, Über die Classenzahl guadratischer Zahlkörper, Acta Arithmetica vol. 1 (1935) pp. 83-86.
4. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Leipzig, Teubner, 1909.
5. S. Chowla, Note on Dirichlet's L-functions, Acta Arithmetica vol. 1 (1935) pp. 113-114.
6. H. Heilbronn, On real characters, Acta Arithmetica vol. 2 (1937) pp. 212-213.

Cornell University

[^0]: Presented to the Society, September 1, 1949; received by the editors August 30, 1948.
 ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.
 ${ }^{2}$ These methods have been tried on all $k \leqq 227$ and it has been ascertained that except for the cases $k=148$ and $k=163, L(s, \chi)$ has no positive real zeros for $2 \leqq k$ $\leqq 227$. Cases $k=148$ and $k=163$ are now being studied and any results obtained about them will appear in the Journal of Research of the National Bureau of Standards.

