
A PROBLEM OF ROBINSON 

P. R. GARABEDIAN 

We propose to prove in this paper a conjecture of R. M. Robinson 
which generalizes to domains of connectivity w ^ 3 a result which he 
proved [3]1 for doubly-connected domains. 

Let D be a finite domain of the s-plane bounded by n^2 simple, 
closed, disjoint analytic curves, &, • • • , Cn, whose sum we denote 
by C. Let z0 be a point of D. We consider the class 0 of functions F(z) 
in D with a t most one simple pole 

(1) F(z) = + a0 + ax(z - z0) + • • • , 
z — so 

at z = Zo, which are regular in the remainder of D and satisfy 

(2) lim sup | F(z) | ^ 1. 

The family 0 is compact. Thus the real number 

(3) cr(ro) = max | F(f0) I 

is defined for every ZQT^ZO of Z>. 
Since the function F(z) s 1 is in the class Q, it is clear that cr(f0) ê 1 

in £>. The question raised by Robinson is whether or not there exists 
in D a nonempty set A on which cr(f 0) = 1. He has solved the problem 
for the case of an annulus. If the annulus under consideration consists 
of the points z with 0 < r < | s | < l , and if r < Z o < l , then he has 
shown [3] that for —1 < f o < — t we have o-(f0) = 1 , while a*(f0)>l in 
the remainder of D. Hence the set A consists here of the segment 
— K f o < — r. From this result Robinson obtains a highly elegant 
treatment of questions of the Schwarz lemma type for an annulus. 

We shall proceed in the opposite direction. We shall use results 
obtained in the author's thesis [2 ] for bounded functions to extend 
Robinson's theorem to domains of connectivity n^S. 

I t follows from the methods in the paper cited that there is a unique 
extremal function F0(z; fo)EO with 

(4) Fo(fo; To) « <Kfo). 

If G(z; f) denotes the Green's function of D, we have 
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n - 1 

(5) log I F0(z; fo) | - G(«; *o) - S G ( 2 ; *,), 

where the points zi, • • • , sw-i depend on f 0, and may lie on C. When 
o-(fo) = 1, one of the zp lies at z0 and we have the extremal function 

(6) Fo(z; fo) - 1. 

The proof of these statements follows so closely the material of 
Chapter VII of [2] that we omit it here. 

The function F0(z; f0) depends continuously on the parameter f0 in 
the sense of uniform convergence in every closed subdomain of D not 
containing ZQ. Also, <r(f0) is a continuous function of f0 for fo^so in D, 
and si, • • • , 3n-i depend continuously on f 0. For if 

(7) lim f m = f o 7* zo, 

then 

»»-*oo 

(8) 

<Kfo) = FoCfo; fo) 

= lim \FO(U;ÏO)\ 
m—» oo 

^ liminf F0(f»; f«) 

= liminf <r(f«). 

On the other hand, since Î2 is normal and compact, we can pick a sub­
sequence fM* of tm and a function F £ Ö so that 

(9) lim <r(fM*) = lim sup <r({\*)» 

(10) Km *„(*;*• * ) = * ( * ) , 

<r(fo) ^ | F(f,) | 

= lim |Fo(r0 ; f / ) | 

(ID 
= lim lim | F 0 ( f * ; f * ) | 

= lim FQ(C?; fM*) = lim sup o-(?m). 

Therefore crCf*»)—»<r(f0) as w-*co. If F0(z ; fm) does not approach 
^o(s; To) as w—> oo, then there exist subsequences fM* and f** of fw such 
that 

(12) lim Fo(s; # ) = * ! ( * ) , 
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(13) lim^o(*;r/*)-F,(«), 

where F\ and Fi are extremal functions in 0 satisfying 

(14) Fi(fo) = F2(?o) = <r(fo), Fi & ^2. 

But the extremal function FQ(Z; f0) is unique. Hence we arrive at a 
contradiction, and it follows that F0(z; fw) tends to F0(z; f0) as m 
tends to infinity. 

We now choose any curve T in D — A, with its end points both 
lying at Zo, which cannot be deformed to a point in D—A in such a 
way that its end points remain fixed. In topological language, we 
choose r to represent an element of the fundamental group of D— A 
which is not the identity. The assumption that such a curve T exists 
will lead us to a contradiction. 

Since T lies entirely inside D—A, there exists an € > 0 such that 
ö"(fo)èl+€ for f o £ r . For clearly <r(Ço)—>°° as fo->2o, and cr(f0) is 
continuous and greater than 1 on every closed arc of T which does not 
contain z0. 

Let f(£) be the parametric representation of T, O ^ J ^ l . We sup­
pose without loss of generality that f ( 0 ^ o for 0 < 2 < 1 , while f(0) 
= f ( l ) =3o. Hence 

(is) a(t) = <r(r(0) 
is continuous for 0 < £ < 1 , and Fo(z; f(/)) is continuous in its depend­
ence on / for 0<t<l. We denote by A* the inverse image of the ray 
a(t) ^ w ^ oo under the mapping w~F0(z; £(/))• 

Since T cannot be shrunk to a point in D — A, there is a pointu 
not in D—A such that the order 

(16) p = ord (r) = f d arg {f(0 - u} 
J o 

of r about u is not zero. We denote by T(/0) the curve which consists 
of A*0 plus the arc of T corresponding to values of t in the interval 
to<t£*l. Now one end point of A*0 is at z0 and the other is at f(/o). 
Hence T(/o) is a curve whose order p(h) about u is well defined. 

We maintain that p(t0) =p for small values of to, say for 0<t0<o. 
For given any M > 1, there is a ô sufficiently small so that if 0 </o <S 
we have <r(t0)>M. Now for any FE:®* we have log | F(z)\ ^G(z; z0). 
Hence iî 0<t0<ô, then A*0 lies in a neighborhood G(z; z0) >log M of 
Zo, and such a neighborhood becomes arbitrarily small for sufficiently 
large M. Therefore it follows that p(to) =p for 0 < / 0 < 5 . 

Similarly, we find there is a A > 0 such that p(t0) =0for 1— A < / 0 < 1 . 
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Now pïéO. Therefore p(to) cannot be continuous in the interval 

(17) 8/2 â *o £ 1 - A/2, 

since p(to) is an integral-valued function. 
The residue of FQ(Z; f (t)) at z ~z0 is bounded away from zero in the 

interval (17), since â(t)^l+e there and FQ(z; f(/)) depends continu­
ously on /. Also, Fo(z; £*(/)) assumes each value w with \w\ > 1 pre­
cisely once in D, and hence its inverse function is uniquely denned for 
\w\ > 1 . Indeed, the inverse function, 

(18) S - 0 o = B f l ( W ; f ( O ) « ^ i + — + — + . . . , | W| > lf 

w wl vr 

is schlicht for \w\ > 1 and its distortion fit at infinity is bounded 
away from zero and infinity, since fit=oiFQ1 F0 = Fo(z; T(0)-

I t follows that At depends continuously on t in the sense of uniform 
convergence of its parametric representation. Therefore p(to) is con­
tinuous in the interval (17), and we arrive at a contradiction. 

We have proved the following theorem. 

THEOREM. Let 12 be the class of functions F{z) in D which satisfy (2) 
and have at most one simple pole (1) at zoGA and let cr(fo) be defined 
by (3). If AQD is the set of points f o £ D such that o"(f0) = 1, then the 
region D—A is simply-connected. 

I t is of interest to consider, following Robinson, the question of 
how many poles we must allow the functions in our class to have in 
order that the set A be vacuous. To be precise, we consider the class 
0(^1, • • • , zm) of functions F(z) satisfying (2) and regular in D except 
for possible simple poles at si, • • • , zm. If several of the Zj coincide, 
we allow the poles in question to have correspondingly increased 
multiplicities. We define the function cr(fo) by (3) with the new 
class Q=Q(si, • • • , sw), a n d w e denote by A(zi, • • • , zm) the set 
of points fo££> with <r(fo)!=l. 

If m^n, the set A(zi, • • • , zm) is seen to be vacuous by the results 
of the papers [l , 2 ] . Indeed, the variation of zeros introduced there 
shows that the extremal function J F 0 £ Q ( S I , • • • , zm) with ^ ( fo ) 
=<r(f0) satisfies an identity 

(19) log | Fo(z) | = £ G(z; «,) - £ G(z; f,), 
j - 1 7 - 1 

where the points fi, • • • , f n-i depend on f0. Since the number of 
zeros f y of the extremal function is less than the number of poles Zj, 
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f0 is in the set A (21*, • 
Indeed, let FGOOsi*, 

(20) 

Then2 

(21) 

p\z) 

k ( f o ) | -

* • • 1 2 * _ i ) , a n < ^ s e t 

__ dG(z;to) . 3G(«;fo) 

é F(z)p'(z)dz 
2irij c 2TTJC 

the extremal function is not constant, and we have <r(f0) > 1 . 
The same type of argument can be used to show that, in general, if 

m = n—-1^2, then A(zi, • • • , zm) is vacuous. However, in every 
domain of connectivity n ^ 2 there exist points Si, • • • , 2n~i such that 
the set A (z%, • • • , £n-i) for the class Q(zi, • • • , 3w-i) is not empty. 
For let 2*, • • • , £*_! be the critical points of the Greene function, 
G(z; fo), of D with normalization point at foG-D. We maintain that 

= x + iy. 

dpi*) I - 1. 

The technique of contour integration which we use here is precisely 
the same as that developed in the paper [2]. 

We introduce the harmonic functions o)i(z) known as the harmonic 
measures of the C% in D, i = 1, • • • , n. The function CO»(JS) is harmonic 
in D and assumes the boundary values 1 on d and the boundary 
values 0 on the remainder of C. We see that any function 

(22) h(z) =G(«;ro) + E W * ) 

can be used in the role of G(z; f0) in the argument of the preceding 
paragraph, provided the normal derivative of h(z) is non-negative on C. 

We now return to the consideration of î2==î2(zo). Suppose that zo 
is a critical point of h(z). Then we can apply the method embodied in 
the relation (21) to functions FÇ1Q, in order to show that foG-4. If 
^ â 3 , it will in general be possible to choose the parameters 
*̂> ' ' ' 1 Xj_i in such a way that 

n-—1 

(23) **(«) = G(z; U) + Z Xf««(«) 

has a critical point at Zo and has a non-negative normal derivative on 

2 Here and in (25) we apply Cauchy's theorem to contour integrals over C of the 
function F. This is permissible, since F has limits in angle almost everywhere on C. 
These limits can be used in the contour integrals (21) and (25), as is seen from the 
Lebesgue convergence theorem. 
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C, for all values of f0* in some small neighborhood of fo- Indeed, this 
is possible if all n — 1 of the critical points of (22) lie in D and the 
vectors 

do not lie on a line through the origin. Thus we shall have 

. . i i y r̂ ** dh*i 

l r dh* 

2irJc àv 

where v represents the inner normal to C. 
Therefore we can conclude that if net3 the set A =A(z0) has, in 

general, interior points. There will be special cases in which this is 
not so, because our conditions upon the parameters Ai*, • • • , A*-i 
in order that h*(z) have a critical point at z0 and a non-negative 
normal derivative on C can degenerate. This happens, for example, 
when D is an annulus r< \z\ < 1 with slits along the segment - K z 
< — r, and z0>0. For this case of symmetry one sees from Robinson's 
original theorem for circular rings [3 ] that the set A lies on the real 
axis. 

I t is clear that further progress in the investigation of the present 
set of problems can be achieved by finding precise information con­
cerning the relative locations of the singularities and critical points 
of the harmonic functions (23) with non-negative normal derivative 
on C. 
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