TRANSCENDENCE OF FACTORIAL SERIES WITH PERIODIC COEFFICENTS

VERNE E. DIETRICH AND ARTHUR ROSENTHAL

It is well known that every real number α can be represented by a factorial series

$$
\begin{equation*}
\alpha=\frac{a_{1}}{1!}+\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\cdots+\frac{a_{n}}{n!}+\cdots, \tag{1}
\end{equation*}
$$

where the $a_{n}(n=1,2, \cdots)$ are integers and, moreover, $0 \leqq a_{n}<n$ (for $n=2,3, \cdots$). This representation is unique for the irrational numbers α, while every rational α can be represented either with almost all ${ }^{1} a_{n}=0$ or with almost all $a_{n}=n-1$.

The representation (1) was discussed and the aforesaid properties were proved by M. Stéphanos [1]. ${ }^{2}$ But an even more general type of series had already been studied by G. Cantor [2] (not known to M. Stéphanos). These series have later been called "Cantor series" (cf. [3]).

In this note we consider the case in which the factorial series (1) has periodic coefficients a_{n} and we prove the following theorem:

Theorem 1. Every number α represented by a factorial series (1) with periodic coefficients is transcendental (except for the trivial case where almost all a_{n} are zero).

The above condition $0 \leqq a_{n}<n$ (for $n=2,3, \cdots$) is not used at all in the following proof. Moreover, the coefficients a_{n} need not necessarily be integers; the a_{n} can be any algebraic numbers. Then Theorem 1 and its proof still hold.

We generalize Theorem 1 further:
Theorem 2. If the power series ${ }^{3}$

$$
\begin{equation*}
\phi(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{n!} z^{n} \tag{2}
\end{equation*}
$$

has algebraic coefficients a_{n} (not almost all of them being zero) which form a periodic sequence, then $\phi(z)$ is a transcendental number for every

[^0]algebraic $z(\neq 0)$.
For $z=1$ Theorem 2 furnishes Theorem 1. Hence we prove Theorem 2.

The general case in which the period starts with $a_{s}(s \geqq 1)$ can immediately be reduced to the case in which the period begins with a_{1}. One has only to subtract and add $s-1$ terms, that is, algebraic numbers. Therefore it suffices to assume that the period starts at a_{1}.

Let m be the "length" of the period, that is, the number of coefficients a_{n} belonging to the period, and let ω be a primitive m th root of unity. Then

$$
\begin{aligned}
e^{\omega k \cdot z}=1 & +\frac{\omega^{k} \cdot z}{1!}+\frac{\omega^{k 2} \cdot z^{2}}{2!}+\cdots \\
& +\frac{\omega^{k(m-1)} \cdot z^{(m-1)}}{(m-1)!}+\frac{\omega^{k m \cdot} \cdot z^{m}}{m!}+\cdots
\end{aligned}
$$

Thus, since the sum of the r th powers of all the m th roots of unity is zero if r is not divisible by m, we obtain:

$$
\begin{aligned}
\sum_{k=1}^{m} e^{\omega k \cdot z}=m & +0+\cdots+0+m \frac{z^{m}}{m!} \\
& +0+\cdots+0+m \frac{z^{2 m}}{(2 m)!}+\cdots
\end{aligned}
$$

and hence

$$
\begin{aligned}
\frac{a_{m}}{m} \sum_{k=1}^{m} e^{\omega k \cdot z}=a_{m} & +0+\cdots+0+a_{m} \frac{z^{m}}{m!} \\
& +0+\cdots+0+a_{m} \frac{z^{2 m}}{(2 m)!}+0+\cdots
\end{aligned}
$$

Similarly for $r=1,2, \cdots, m-1$ we have

$$
\begin{aligned}
& \frac{a_{m-r}}{m} \sum_{k=1}^{m} \omega^{k r} e^{\omega k \cdot z}=0+\cdots+0+a_{m-r} \frac{z^{m-r}}{(m-r)!} \\
&+0+\cdots+0+a_{m-r} \frac{z^{2 m-r}}{(2 m-r)!}+0+\cdots
\end{aligned}
$$

By summing over $r=0,1,2, \cdots, m-1$, we obtain

$$
\sum_{k=1}^{m} e^{\omega k \cdot z}\left(\frac{1}{m} \sum_{r=0}^{m-1} a_{m-r} \omega^{k r}\right)=\phi(z)+a_{m}
$$

or, if we set $(1 / m) \sum_{r=0}^{m-1} a_{m-r} \omega^{k r}=A_{k}(k=1,2, \cdots, m)$, we have

$$
\begin{equation*}
\sum_{k=1}^{m} A_{k} e^{\omega k \cdot z}-\left[\phi(z)+a_{m}\right] \cdot e^{0}=0 \tag{3}
\end{equation*}
$$

It is impossible that all coefficients $A_{k}(k=1,2, \cdots, m)$ vanish; for then the equation of $(m-1)$ st degree

$$
\sum_{r=0}^{m-1} a_{m-r} z^{r}=0
$$

would have m different roots $\omega^{k}(k=1,2, \cdots, m)$, while the case that all $a_{n}=0(n=1,2, \cdots, m)$ has been excluded. But now, since for an algebraic $z \neq 0$ the numbers $\omega^{k} \cdot z(k=1,2, \cdots, m)$ are algebraic, different, and nonzero and since the $A_{k}(k=1,2, \cdots, m)$ are also algebraic numbers and at least one of them is not zero, it follows from (3) by Lindemann's general theorem ([4, 5], cf. also [6]) that $\phi(z)$ $+a_{m}$ and hence also $\phi(z)$ is a transcendental number for every algebraic $z \neq 0$.

Bibliography

1. M. Stéphanos, Sur une propriêté remarquable des nombres incommensurables, Bull. Soc. Math. France vol. 7 (1879) pp. 81-83.
2. G. Cantor, Ueber die einfachen Zahlensysteme, Zeitschrift für Mathematik und Physik vol. 14 (1869) pp. 121-128.
3. O. Perron, Irrationalzahlen, Göschens Lehrbücherei, vol. 1, Berlin, 1st ed., 1921, 2d ed., 1939, 3d ed., 1947, §33.
4. F. Lindemann, Ueber die Zahl π, Math. Ann. vol. 20 (1882) pp. 213-225.
5. - Ueber die Ludolph'sche Zahl, Sitzungsberichte der Akademie der Wiss. Berlin (1882) pp. 679-682.
6. K. Weierstrass, $Z u$ Lindemann's Abhandlung: "Ueber die Ludolph'sche Zahl", Sitzungsberichte der Akademie der Wissenschaften, Berlin (1885) pp. 1067-1086.

Purdue University

[^0]: Presented to the Society, November 26, 1948; received by the editors August 12, 1948.
 ${ }^{1}$ The expression "almost all" is used in the sense of "all but a finite number."
 ${ }^{2}$ Numbers in brackets refer to the bibliography at the end.
 ${ }^{3}$ Under the conditions of Theorem 2, $\phi(z)$ is an entire function.

