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tha t "the problem of the infinitesimal stability of the periodic solu
tions of nonlinear systems always leads to a Hill equation." Following 
this thought, the author reduces the problem of stability to the 
analysis of the local behavior of the variational equations (of the Hill 
type) in the various parts of the response curve and applies this pro
cedure to the Duffing equation. I t turns out, however, that, on this 
basis, the free oscillations are unstable. Having ascertained this seem
ingly paradoxical result, the author ascribes it to the fact that the 
criterion of the "infinitesimal stability" (that is, the stability in the 
sense of the variational equations) ought to be replaced by tha t of 
the orbital stability. In fact, after a somewhat delicate argument, in 
§7, the author proves this point. In spite of this, the reader, partic
ularly the beginner, must inevitably feel somewhat confused as to 
when to use one criterion and when to use the other. This question 
does not seem to find a definite answer in the text, probably because 
the author, as he said in his introduction, had to curtail considerably 
the theory of stability owing to lack of space. I t seems, however, 
sufficiently simple to show that if the differential equations are re
ferred to the "amplitude-phase" plane (a> <£) instead of the usual 
(#, £) phase plane (namely, da/dt~fi(a, <£), dxt>/dt=f2(at <j>)) the 
singular point /i(ao, <t>o) =/2(#o, <£o)=0 in this case represents the 
stationary periodic motion (if ao^O) and the variational equations 
("the infinitesimal stability") give precisely the orbital stability in 
such a case, without any necessity of applying the theory of charac
teristic exponents of Poincaré. Reduction to this form is always 
possible if the differential equations do not contain time explicitly. 

N. MINORSKY 

Differential algebra. By Joseph Fels Ritt. (American Mathematical 
Society Colloquium Publications, vol. 33.) New York, American 
Mathematical Society, 1950. 8 + 181 pp. $4.40. 

I t was a gigantic task that J. F. Ritt undertook twenty years ago: 
to give the classical theory of nonlinear differential equations a 
rigorous algebraic foundation. Emmy Noether and her school had 
done the same thing for the theory of algebraic equations and alge
braic varieties, but differential equations are much more difficult 
than algebraic equations. Luckily, Ritt has gathered around himself 
a whole school of able collaborators: Raudenbusch, Strodt, Kolchin, 
Howard Levi, Gourin, R. M. Cohn. 

The present book is not just a revised and enlarged edition of the 
author's Differential equations from the algebraic standpoint (Collo
quium Publications, vol. 14). I t is written from a much higher point 
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of view and based upon new principles. The first edition was a tenta
tive, this a classic. 

One important new feature is that the whole theory is now based 
upon the Ritt-Raudenbusch basis theorem. 

Let J be â field in which an operation of differentiation is per-
formable, for example a field of functions of one variable x closed 
with respect to differentiation. Let yi (i = l, • - • , n) be symbols of 
unknown functions, and y^ symbols of their derivatives (for example 
yio = yi andy*i = ;y/). Polynomials in the indeterminates y a are called 
d.p. (differential polynomials). They form a ring in which a differ
entiation is defined. 

Let 2 be any infinite set of d.p. A finite subset A is said to form a 
basis of 2 if for every d.p. A in 2 , a power Ap is a sum of multiples of 
elements of A and their derivatives. The basis theorem now states: 
Every set 2 has a finite basis. 

The basis theorem was implicit in Ritt 's work, but it was Rauden-
bush who brought it to the present complete form. By placing this 
theorem right at the beginning, in Chapter I, the great line of thought 
is made much clearer than it was in the original treatment. 

Starting from the basis theorem, the theory of differential ideals 
is developed up to the representation of "perfect ideals" as intersec
tions of prime ideals. 

If for the indeterminates yit • • • , yn field elements 771, • • • , rjn are 
substituted, it may happen that all d.p. of a set 2 become zero. In 
this case, the set {171, • • • , r\n] is called a zero or solution of 2 . The 
totality of all zeros is the manifold of 2 . 

Chapter II deals with manifolds and their decomposition into ir
reducible manifolds. Just as in algebraic geometry, the dimension of 
an irreducible manifold can be defined as the maximum number of 
parametric indeterminates among the y^ 

For one single differential equation F = 0 a distinction between 
singular and nonsingular solutions is introduced. In the manifold of 
F, there is always one irreducible component, called the general solu
tion which does not consist of singular solutions only. Perhaps non-
singular component would be a better expression. 

The discussion of the solutions of one single differential equation 
is continued in Chapter I II . The "low power theorem" gives the 
necessary and sufficient condition that the nonsingular component of 
one differential equation be at the same time a component of another 
differential equation. This theorem solves a problem first treated by 
Laplace and Poisson by heuristic methods. 

In Chapter IV, systems of algebraic equations are treated by a new 



ip5o] BOOK REVIEWS 523 

algorithmic method. The results of this chapter are used in Chapter 
V to give an algorithmic treatment of various questions connected 
with finite systems of differential equations. For the case of a field 
J consisting of analytic functions, a very useful approximation 
theorem is proved. 

Chapter V deals with constructive methods and tests. 
In Chapter VI, the case of a field of analytic functions is treated by 

analytic methods. For this case, another proof of the low power 
theorem is given. 

Chapter VII deals with intersections of algebraic differential mani
folds, especially with their dimensions. A result of Jacobi proves true 
in some special cases, but false in general. 

Chapters VIII and IX deal with partial differential equations. In 
Chapter VIII , a very important existence theorem, due to Riquier, 
is proved. In Chapter IX this theorem is used to extend some of the 
main results of the preceding chapters to partial differential poly
nomials. 

B . L. VAN DER WAERDEN 

Transcendental numbers. By Carl Ludwig Siegel. (Annals of Mathe
matics Studies, no. 16.) Princeton University Press, 1949. 8 + 102 
pp. $2.00. 

As the author states in a short preface, this book is based on lec
tures given at Princeton in 1946. In Chapter I, The exponential f unc
tion, proofs are given of the irrationality of e and 7r, and then a gen
eral method is introduced. 

Let pi, • • • , Pm be complex numbers, nh • • • , nm, non-negative 
integers, and let 

m 

N + 1 = S (»* + 1). 

I t is shown that polynomials Pi(x)y • • • , Pm{x) of degrees wi, • • • , 
nmi respectively, may be determined uniquely (up to a constant 
factor) such that the function 

m 

R(x) = ]£P*(*)«PW 

vanishes a t x = 0 of order N. Such a function is called an approxima
tion form. An explicit formula for R(x) as a multiple integral provides 
an upper bound for |-R(1)| and shows that .R(1)>0 when pi, • • • , 
POT are real. 


