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Introduction. The method devised by Riemann to solve the Prob­
lem of Cauchy applies to linear, hyperbolic, partial differential equa­
tions of second order for one unknown function u of two independent 
variables x, y. For a homogeneous equation the essential points in 
the method are: 

(a) The introduction of the characteristics as coordinate lines, 
(b) The construction of a line integral I = f{Bdx—Ady} which 

vanishes around closed paths, where: 
(c) A and B are certain bilinear forms in u, ux, uy and v, vx, vy, and, 
(d) v (Riemann's function) is a properly chosen two-parameter 

family of solutions of a second linear partial differential equation, the 
adjoint equation. 

In this paper new bilinear forms are taken for A} B in (b), and the 
rôle of the adjoint equation in (d) is taken over by a partial differen­
tial equation termed the associate equation of the original equation. 
Each solution <f> of the original equation leads to an associate equa­
tion and the Problem of Cauchy is then solved with the aid of a 
properly chosen two-parameter family of solutions of the associate 
equation called the resolvent, the analogue of Riemann's function. 

This modification offers some hope of extending Riemann's method 
to the Problem of Cauchy for linear hyperbolic partial differential 
equations with more than two independent variables.1 Such an ex­
tension to three independent variables is actually carried out in this 
paper for the equation of cylindrical waves.2 In the treatment of this 
equation, following (a), characteristic coordinates are adopted. As an 
interesting corollary, it turns out that axially symmetric solutions are 
governed by one3 of Euler's partial differential equations, namely, 

An address delivered before the New Orleans meeting of the Society on April 20' 
1951, by invitation of the Committee to Select Hour Speakers for Southeastern Sec­
tional Meetings; received by the editors February 8, 1951. 

1 The classic work on Cauchy's problem is the book by J. Hadamard, Le problème 
de Cauchy et les équations aux dérivées partielles linéaires hyperbolique, Paris, 1932, 
where references to the work of other authors are given. 

2 My colleague A. Weinstein has kindly pointed out that an extension of Rie­
mann's method for this equation has been given by H. Lewy, Verallgemeinerung der 
Riemannschen Methode auf mehr Dimensioned Nachr. Ges. Wiss. Göttingen (1928) 
pp. 118-123. His method differs from ours in that it employs three "Riemann func­
tions," and neither makes use of characteristic coordinates, nor of an "associate equa­
tion." 

3 See, for example, G. Darboux, Leçons sur la théorie générale des surfaces, vol. 2, 2d 
éd., Paris, 1915, pp. 54-70. 
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(a — @)ua0 — (ua — up)/2 = 0. 

1. Riemann's method. The solution of the problem of Cauchy 
given by Riemann4 for the partial differential equation 

(1) uxy — a(ux — uy) = 0, a = a(x} y), 

has been extended5 to the general linear partial differential equation 
of second order in two independent variables xt y, 

(2) uxy + aux + buy + cu = ƒ, 

where a, 6, c, ƒ are given functions of x, y. 
In this section first we set forth the essentials of this method, as 

usually presented, to prepare the way for a modification which per­
mits extension to an equation with three independent variables, the 
equation for cylindrical waves 

(3) uxx + UyV — utt = 0. 

For simplicity we consider only equations of the type 

(4) L(u) = uxy — aux — buy = 0, a = a(x, y), b = b(x, y). 

Actually, if a solution U\ of (2) and a solution Uo of the homogeneous 
equation ( / ^ 0 ) are known, equation (2) can always be reduced to 
one of type (4) for a new unknown function ü defined by U — UI+UQÜ. 

The classical procedure associates with (4) its adjoint equation 

(40 M(v) = vxy + (av)x+ (bv)y = 0, 

and is based6 on the differential identity 

Ax + By = vL(u) — uM(y), A = (vuy — uvy)/2 — auvy 

B = (vux — uvx)/2 — buv. 

This identity implies that the line integral 

/ = f{Bdx-Ady\ 

vanishes around closed paths lying in the interior of a domain D 
within which the function u, v are regular solutions of L(w)=0 and 
M(v) = 0, respectively. 

The fact that the line integral / vanishes around closed paths leads 
immediately to the solution of Cauchy's problem for (4). Let C be 

4 B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungs-
weite, Göttingen Abhandlungen vol. 8 (1858-1859) pp. 245-264, or Werke, Leipzig, 
1892, 2d éd., pp. 156-175. 

5 J. Hadamard, op. cit. pp. 93-95. 
6 J. Hadamard, op. cit., pp. 81-82. 
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P(*, y) 

FlG. 1 

an arc meeting any horizontal or vertical line in a t most one point. 
Along C the values of uxi uy {Cauchy1 s data7) for the solution u of 
(4) are given. In order to calculate the value u(P) of the solution at 
the point P in the figure, the line integral I is evaluated around the 
closed path PXYP formed by the horizontal line segment PX, the 
arc X F o f C, and the vertical line segment F P . One finds 

(6) I B(x, y)dx + I {Bdx - Ady) - I A(x, y)dy = 0. 
J P J x J Y 

(7) 

If a solution v — v(xt y\ x, y) of M(v) = 0 can be found for which 

vx = — bv on y = y, vy = — av on x = x, 

v(x, y; x, y) = 1 

hold on the characteristics x = x, y = y through P, we shall have 

(8) A(x, y) = (uv),/2, B(x, y) = (uv)x/2t 

and consequently (6) will yield 

(9) u(P) = — [u(X)v(X) + u(Y)v(Y)] + | {Bdx - Ady}. 
2 J x 

The function v is known as Riernanris function, and, once it has 
been determined, u(P) may be calculated by (9) from a knowledge 
of the Cauchy data along C. 

The first step in Riemann's method is the formulation of the line 
integral / so that it vanishes around closed paths. We note that the 
coefficients A, B of the differentials are bilinear forms in the two sets 
of variables u, uX} uy and v, vxi vy. Furthermore, the real reason for the 

7 In the usual terminology Cauchy data consist of the values UQ of u on C and the 
values u\ of its directional derivative in some direction not tangent to C. Assigning 
ux, uy on C determines u\ exactly and w0 up to an arbitrary additive constant. 
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introduction of the adjoint equation (4') and its solution v is to make 
available the identity (5), which guarantees that I vanishes around 
closed paths. 

In seeking an alternative approach to the solution of Cauchy's 
problem we might take A and B to be general bilinear forms in 

and vt vx, vy with coefficients arbitrary8 functions of x, y, and 
let the rôle of the adjoint equation be assigned to a partial differential 
equation, 

(10) A(») = vxy — avx — pvy = 0, a = a(x, y), 0 = 0(x, y)t 

whose coefficients a, j8 are a t our disposal. 
With these general principles in mind, let us set A = —\~luyvy, 

B—yrluxvx and at tempt to construct a line integral 

I = I {\~xuxvxdx + fJT^yVydy}, 

which vanishes around closed paths in the interior of a domain 
within which u, v are regular solutions of L(u)=Q, A(z/)=0 respec­
tively, the functions X, /x of x, y being, for the moment, perfectly 
arbitrary.8 

From the identity 

( X - 1 ^ ^ ) , , — (lf1UyVy)X = X-V" 1 [(/*«* — \Uy)A(v) + (fJLVX — \Vy)L(u)\ 

— \~1fx~1[fx(\~1Xy — a — a)uxvx 

+ (a\ —• @fJL)uxvv + (aX — bix)UyVx 

~ X(/i~V* ~ b - P)UyVy], 

the analogue of (5), it is clear that I will vanish around closed paths 
for every pair of solutions u, v of L ( ^ ) = 0 , A(z;)=0, provided the 
arbitrary functions a, /3, X, fx satisfy 

a\ - fin = 0, Xy = (a + a)\ 

a\ — bfi = 0, Ms = ( H 0)M. 

When the equations in the first column are used to eliminate a, /3 
from the equations in the second column, we find 

\ y = a\ + bfi, /ij. = à\ + ô/j. 

Consequently \y~iix and a potential function <£ = <£(#, 3;) exists for 
which 

Subject, of course, to the usual differentiability conditions. 
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X = <t>xt M = <i>yi with L(<t>) = 0. 

Moreover the first column in (11) yields 

a = <j>x <t>vb> & == <t>z<Pv Q" 

With this choice of ce, /3, X, /x the identity reduces to 

{<j>X UxVX)y - (<j>y UyVy)X = {<j> X UX — <j>y Uy)A(v) + (<j) x VX - <f) y Vy)L(u), 

where 

(12) A(v) — Vxy — b4>z $yUx ~- d<t>x<l>y Vy 

The equation A(z>) = 0 will be termed an associate equation of L(u) = 0. 
Each solution <j> of L(w) = 0 gives rise to such an associate equation, 
of which it is automatically a solution. 

LEMMA. The line integral 

vanishes around closed paths lying in a region D within which u is a 
regular solution of L{u) = uxy — aux — buy = 0 and v is a regular solution 
of an associate equation A(v)^vxy — b<t>x

l<j>yvx — a<frx<t>y~
1vy = <dy the func­

tion 0 being any solution of L(u) = 0, regular in D, for which $ ^ 0 , 
<t>y^0. 

Guided by the procedure in Riemann's method, we evaluate I 
around the closed path PXYP in Fig. 1, obtaining, in place of (6), 

/

, x - l rY - l - l 

<t>x uxvxdx + 1 {<t>x uxvxdx + 4>y UyVydy) 
p J x 

+ I <t>y UyVydy = 0. 
Jv 

(13) 

Instead of the initial conditions (7) prescribed for v on the character­
istics through JP, we now require 

(14) vx = 4>x on y = y , vy = — <f>y on x = x. 

Once such a solution of the associate equation has been found, the 
integrands in the first and last integrals in (13) reduce to ux, —uy 

respectively, and one finds quite readily that 

1 r i 1 CY t - i - 1 ) 
(15) u(P) = — [u(X) + u{Y)\ H I {<£* UxVxdx + 4>y uyvvdy\. 

2 2 J x 
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A solution v — v(x, y; £, y) of an associate equation A(v) = 0 subject 
to the initial conditions (14) is termed a resolvent of L(u)=Q and, 
after it has been found, u(P) can be calculated by (15) from the 
Cauchy data for u along C. Since each solution <£ of L(u) = 0 gives 
rise to an associate equation A(v) = 0, there are, a priori, many such 
resolvent functions. In practice, one would, of course, choose for <j> 
the simplest particular solution of L(u) = 0 that is available. 

THEOREM. The solution to Cauchy1 s problem for the partial differen­
tial equation L(u) — u$y aux — buy = 0 with initial data prescribed along 
the arc C in Fig. 1 is given by 

1 r i 1 CY i - i - i > 
u{P) = — [u(X) + u(Y)\ -\ I \<l>x uxvxdx + (f>y UyVydy], 

2 2 J x 
where <fi = <j>(x, y) is any regular particular solution of L(u)=0 for 
which <£*7^0, 0V7^O, and v = v(x, y; x, y)} a resolvent of L(u)=0, is a 
two-parameter family of solutions of the associate equation 

Mv) = Vxv ~" # 0 * <t>yVx ~ <kt>z4>y Vy = 0 

subject to the initial conditions vx = <j>x on y = y,vy = — <j>y on x = x, 
upon the characteristics through P . 

Let us apply this theorem to equation (1) treated by Riemann. 
For the particular solution 0 we select c/)=x-\-y, whereupon the asso­
ciate equation becomes A(v) ~vxy+a(vx — vv) = 0, the conjugate equa­
tion* to L(u) = 0, and (15) reduces to 

__ l l rY 

(15') <P) = ~ [«(*) + u(Y)] + — {uxvxdx + UyVydy}. 
2 2 J x 

When a — m(x— y)~l the equation L(u)=0 is Euler's equation, 
and explicit formulas for its resolvent have been given9 in terms of 
Appell's hypergeometric function F\ of two variables. 

2. The equation for cylindrical waves. Classical solution of 
Cauchy's problem. I t has been known for a long time that the solu­
tion to Cauchy's problem 

u(x, y, 0) = u\x, y), ut(x, y, 0) = u\x, y), 

for the wave equation (3) is given by10 

9 M. H. Martin, The rectilinear motion of a gas, Amer. J. Math. vol. 45 (1943) pp. 
391-407. 

10 J. Hadamard, op. cit. p. 71. 



244 M. H. MARTIN [July 

(16) 2TU(X, y, î) = F Ï ( « 1 ) + — W ) , 

where the operator Fr(J) operating on a function ƒ is defined by 
r ƒ ( * + P cos <t>, y + p sin <t>) 

(17) F,(/) = -
J o •/ o 

• pdpd<p, 
(r2 - p2)1'2 

or, on setting p = rr, by 

/KA î,,* Cir C1 /(* + T r c o s ( t>>y + rrsin*) . , , (18) ^ ( / )==rJo Jo 0 ^ ^ «**• 
We shall give this classical solution another form so that it may 

more readily be compared with the solution to be obtained later by 
generalizing Riemann's method. 

By differentiating (18) with respect to r under the integration 
sign, we obtain 

dFr(f) 1 f " f ' fp 
• apaq> 

= j_r2T rr ft 
r Jn J a (r2 — dr r Jo Jo ( r 2 - p 2 ) 1 / 2 

+ — I I — dPd<t>. 
r Jo Jo (r2 - p2)1'2 

After an integration by parts in the first term, this reduces to 

and with the necessary modifications in (17), (19), it is easy to verify 
that (16) takes the form 

- » o î 

(20) .(*,,, <) = *»(*,?)+-Jo )o¥—^d»d*' 

This is the desired form for the solution to Cauchy's problem. With 
either (16) or (20), the value u(P) of the solution at the vertex 
P(#, y, t) of the characteristic cone (x — x)2+(y — y)2 = (t — t)2 is com­
puted from Cauchy's data given over the circular region (x — x)2 

+ (y — y)2^t2 intercepted by the characteristic cone on the carrier 
of Cauchy's data, the plane / = 0. We note in passing that (20) may 
be given a concise form 

u(x, y, t) = u°(£, y) -\ I I (kup — lpu )dpd<j>, 
2w J o J o 
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by the introduction of the length /=(J2—p2)1/2 of the tangent line 
drawn from the vertex 7(x, yy t) of the characteristic cone to a sphere 
of radius p with center a t the point (x, J, 0) where the axis of the 
characteristic cone pierces the plane t « 0. 

3. The equation for cylindrical waves. Characteristic coordinates. 
Each point (#o, yo, h) of (x, y, t)-space is a vertex for a characteristic 
cone (x — x0)

2 + (y—yo)2x={t — h)2. For the computation of the value 
of the solution w a t a point P(%, y, t) we shall, for t>0, be interested 
only in those points which lie on, or above, the plane 2 = 0 and upon, 
or inside, the lower mantle of the characteristic cone with vertex at 
P , tha t is, in the points of the conical region 

C: 0 S tS I (x - x)2 + (y - y)2 S (t - t)\ 

pictured in Fig. 2a. In this figure P P 0 is the axis of the characteristic 
cone with vertex a t P. We introduce curvilinear coordinates a, /3, </> 

FIG. 2a. Conical region. FIG. 2b. Wedge W. 

to fix the position of a point P(x, y, t) in C by taking points A (#, y, a), 
B(x, y, /3) on the axis so that the lower mantle of the characteristic 
cone with vertex A intersects the upper mantle of the characteristic 
cone with vertex B in a circle through P. The position of P on this 
circle is then fixed by the angle (/> shown in Fig. 2a. Elementary 
geometrical considerations show tha t 

1 1 
« = * + — (« - |3) cos <f>, y = y + — (a - 0) sin 0, 

(21) i 

J - — ( « + 0)f 

and consequently, on writing p = ((x — x)2 + (y — y)2)112, we shall have 
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(22) *=(<* + 0)/2, p = (a - 0)/2. 

The coordinates a, /3, <£ of a point P will be termed characteristic 
coordinates, even though only two of the coordinate surfaces through 
P are mantles of characteristic cones, the third being a half-plane. 

After the introduction of characteristic coordinates, equation (3) 
for cylindrical waves becomes 

1/2 u^ 
(23) L(u) = uap - («a - up) - — = 0. 

a — p (a •— p)z 

Obviously, we shall be interested only in those solutions of this 
equation which are periodic of period 2T in </>. 

For solutions with axial symmetry about x = x, y — y this equation 
reduces to Euler's equation 

m 
(24) uap (ua — up) = 0, m = 1/2. 

a —• 0 

The transformation (21) carries the conical region C of (x, y, t)-
space into the wedge 

W: 0£a£t, - a ^ p S + a, 0 ^ <f> S 2TT, 

in (a, j3, <£)-space shown in Fig. 2b. From (22) the base of C becomes 
the vertical face /3 = — a in back of W; the conical mantle of C trans­
forms into the vertical face a = t of W\ while the axis PPQ inside C, 
from (21), appears as the vertical face /5 = OJ of W. Both horizontal 
faces $ = 0, <P = 2T of WT are transforms of the trace of C on the plane 
y = y. The vertex P of C transforms into the edge a=/3 = t of W; the 
periphery of the base of C becomes the edge a = t, /3= — ? of W; and 
the center Po of the base of C appears as the edge a =/3 = 0 of W.11 

4. The equation for cylindrical waves. Solution of Cauchy's prob­
lem by Riemann's method. We begin by formulating Cauchy's prob­
lem in (a, j8, <£)~space. The carrier 2 = 0 for Cauchy's data in (x, y, t)~ 
space becomes the plane a+j3 — 0 in (a, 0, <£)-space. From (21) we 
find 

ua = (up + ut)/2, up = — (wp — w*)/2, ^0 = «0. 

11 I am indebted to J. B. Diaz for drawing my attention to an intuitive process 
which carries the wedge W into the cone C. One shrinks the face /3=a of W into the 
lower edge and brings the upper face of the resulting solid into coincidence with the 
lower face by revolution around this edge as axis. 
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In particular, for the carrier a+j3 = 0, this yields 

(25) ua = (up + u )/2, up = — (up — u )/2, % = %, 

so that Cauchy's data ua, Upf % are prescribed on the carrier a+j3 = 0. 
Thus the problem of computing the value u(P) a t the vertex 

P(x, y, t) of the characteristic cone in (x, y, /)-space, from a knowl­
edge of Cauchy data given over the circular region intercepted by 
the characteristic cone on the plane / = 0, becomes the problem of 
computing the value of a solution to (23) along the edge a=/3 = t of 
W when Cauchy data are prescribed on the face (3 = — a of W. 

We have pointed out in §1 that the first step in Riemann's method 
for two independent variables is the formulation of a properly chosen 
line integral I which vanishes around closed paths. In seeking a gen­
eralization to partial differential equations with three independent 
variables, it is natural to search for a surface integral I which van­
ishes when extended over closed surfaces. 

For the partial differential equation (23) the proper surface integral 
is 

(26) 
C C ( Va — Vp \ 

= < upVpd$d<j> — uavad<j)da + % dadfi > , 

where u — u(a, /3, <j>) is a solution of (23) and v = v(a, /3) is a solution of 
the associate equation 

1/2 
(27) A(V) = Vap H (Va — Vp) = 0, 

a — /5 

which, incidentally, is the conjugate equation to (24). That / ac tua l ly 
vanishes over closed surfaces is easy to verify, for if we set K = UpVp% 

L= —uaVa, M — u^Va—Vp)(ci— )3)"~2, a computation shows tha t 

Ka + Lp + M* = 0. 

Keeping in mind the procedure in §1, where we evaluated the line 
integral i" of Lemma 1 around the closed path PXYP in Fig. 1, we 
integrate / in (26) over the surface of the wedge W. We obtain 

(28) 7 _ + / + / + 7 + / = o . 
a=t p=*~a p=a 4>=0 0 = 2 r 

Since u^ has period 27r in <j> and va, vp are independent of <j>y the last 
two terms cancel each other, because the projection of the top face 
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on the bottom face of W has opposite orientation. When the integra­
tions in the first three terms are written out explicitly, we obtain 

i+7 
I __ [upVfi]«=tdpd<t) + I I [uaVa ~ U{iV{i\^-adad<t> 

J
i 2ir /» t 

I [UaVct + UpVplfcadadQ = 0. 
o J o 

The next step in the procedure for two independent variables was 
to impose conditions (14) on the characteristics through P for the 
solution v of the associate equation (12). Corresponding to this, we 
require that the solution v of the associate equation (27) meet the 
conditions 

(30) vp = 1 for a = t, va = Vp = 0 for j3 = a, 

on the two faces of W intersecting in the edge a=/3 = t of W repre­
senting P . The solution 

o » a + 0 + 2((? - a)(t - /3))1'2 

of (27) actually meets these conditions, with 

(31) 
/I + «y2 n - ay2 

When substitutions for va, Vp into (29) are made from (30), (31) we 
find tha t 

/

2v 

u\a-l,p—td<l> 

-X'7.rf[-(^)1 
4' "(rn;)"l ,-ƒ** 

since u — uÇP) on the edge a= /3 = Jof W. This formula expresses the 
value u(T) of the solution to (23) in terms of Cauchy data prescribed 
on the carrier plane /3=—a. The problem of Cauchy is solved in 
(aj j3, <j>)-space, and we shall now transform this solution back to 
(x, y, /)-space to obtain the classical result (20) as a check on our 
calculations. 
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If, in addition to (25), we observe that w = w°(/, <£) on the edge of 
a = t, j8= — ?of W, formula (32) reduces to 

that is, to (20), provided we note, from (22), that p = a when /?= —a. 
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