
ERGODIC SETS 

JOHN C. OXTOBY 

Introduction. Ergodic sets were introduced by Kryloff and 
Bogoliouboff in 1937 in connection with their study of compact dy­
namical systems [16]. The purpose of this paper is to review some 
of the work that has since been done on the theory that centers around 
this notion, and to present a number of supplementary remarks, 
applications, and simplifications. For simplicity we shall confine at­
tention to systems with a discrete time. Continuous flows present 
no difficulty, but the development of a corresponding theory for 
general transformation groups is still in an incomplete stage. An 
example due to Kolmogoroff (see [5]) shows that such an extension 
cannot be made without sacrificing either the invariance or the dis-
jointness of ergodic sets. 

In §§1 and 2 we give a brief, but self-sufficient, development of the 
basic theorems of Kryloff and Bogoliouboff. In §3 we collect some 
auxiliary results for later use. In §4 a simple characterization of 
transitive points is obtained. In §5 the distinctive properties of some 
special types of systems and subsystems are discussed, and in §6 
these results are used to discover conditions under which the ergodic 
theorem holds uniformly. In §7 a generalization to noncompact 
systems is considered, and in §§8 and 9 some known representation 
theorems are obtained as an application of ergodic sets. In §10 
there is given an example of a minimal set that is not strictly ergodic, 
similar to one constructed by Markoff. 

1. Some corollaries of the ergodic theorem. We shall use the fol­
lowing notations: If f(p) is a real-valued function on a set £2, and if 
T is a 1:1 transformation of Î2 onto itself, then 

M{f, p, k) - Mp) = 4" £ SiPp) ( £=1 ,2 , . . . ) 

and 

M(f, P) = ƒ*(ƒ>) = Hm M(ƒ, p% k) 

in case this limit exists. The characteristic function of a set E is 
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denoted by XE. The upper density of a set E of Integers is defined 
by «*(£) =lim sup^co (l/k) Y£* X*(«). 

Let T be a 1:1 measure preserving transformation of a measure 
space (Î2, JU) onto itself, and assume that JU(Q) = 1. The ergodic 
theorem states: 

(1.1) If ƒGii> then the sequence {ƒ&(£)} converges a.e. to a limit 
function jr*!Gii swc& that f*(Tp) =ƒ*(ƒ>) <zwd ff*dfx=^ffdjji. 

(1.2) /ƒ / G i i 0»d ƒ w non-negative, then for almost all p either 
f*(p)>0orf(p)=0. 

PROOF. Let x(P) be the characteristic function of the set on which 
f*(p) is either zero or undefined, and apply (1.1) to the function %ƒ• 

A second corollary is the mean ergodic theorem: 
(1.3) IffeLq, l ^ g < c o , thenf*GLq and | | /*- /* | | a->0 as É-»oo. 
PROOF. For any bounded function ƒ the conclusion follows im­

mediately from (1.1). For any other / G i « it follows from the in­
equality ||/&||a^ll/Hq ( i = l , 2, • • • ) and the fact that bounded func­
tions are dense in Lq. 

A less familiar corollary is the following: 
(1.4) If fÇzL>2, then the limit functions f*(p) and <i>h(p) 

= l i n w (1/n) E C ? (fkiTW-f*^))* ( * « 1 , 2, • • • ) are defined a.e., 
and fâdfx—ïO as k—> <*>. 

PROOF. By (1.3), fk-f*eU, hence (ƒ*-ƒ*)«GLi. Since <p(p) 
= M((fk-f*)2, p), it follows from (1.1) that </>k(p) is defined a.e. 
and that /<£^ / J =ƒ(ƒ&--ƒ *)2d/z. The last conclusion then follows from 
(1.3). 

A system (Q, T, fx) (and the measure JJL) is called ergodic if £2 can­
not be split into two disjoint invariant measurable sets of positive 
measure. For such systems (1.1) implies that ƒ* is constant a.e., 
and (1.4) can be strengthened as follows: 

(1.5) If the system (Q, T, ju) is ergodic, and if fÇzL^ then as &-->oo 
the sequence {<l>k(p)} defined in (1.4) converges to 0 uniformly a.e., and 
for any a>0 the sequence >pk(p, a) — 6*{n: \fk(Tnp)—ffdix\ >a} like­
wise converges to 0 uniformly a.e. ; both sequences converge uniformly on 
the set Qi of points where f*(p)=:ffdfjL and <l>k(p) =ƒ(ƒ*—ƒ*)2dfi 
( * - l , 2 , • • • ) . 

PROOF. For an ergodic system, ju(Qi) = l, and the first conclusion 
follows from (1.3). The second conclusion then follows from the 
inequality 

a*ô*{n: \fk(T»p) - ƒ * ( * ) | > a} S 4>\p), 

which is implied by the definition of <j>k. 
This result shows that for ergodic systems the convergence of ƒ* 
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to its constant limiting value ƒ* is nearly uniform on almost every 
orbit, in the sense that if e>0 and k is sufficiently large, then for 
almost all p the mean square difference between fk(Tnp) and f*(p) 
as n ranges over the positive integers is less than €, and for all n 
except a set of small upper density the absolute difference is less 
than e. 

2. The theory of Kryloff and Bogoliouboff. Assume now that 
Q is a compact metric space and that J* is a homeomorphism of £2 
onto itself. Denote by C(Q) the space of real-valued continuous func­
tions ƒ on Q, with the norm ||/ | |=max | / (£) | . Any finite Borel 
measure fx in Ö determines a corresponding positive linear functional 
L(f) on C(fi), namely, 

£(ƒ)= ƒ ƒ * (/GC(O)). 

The Riesz theorem [28; 12] asserts that, conversely, any positive 
linear functional on C(Q) corresponds in this way to one and only one 
finite Borel measure fx in 0. Invariant measures correspond to in­
variant functionals, and normalized measures to functionals for 
which L(l) = 1. It will be seen that the theory of Kryloff and Bogo­
liouboff is essentially a series of corollaries of this theorem and the 
ergodic theorem. 

(2.1) Any compact system (Q, T) admits at least one normalized 
invariant Borel measure. If K is a compact subset of fl, then either 
fx(K)>0for some such measure ix or else M(XK$ p) = 0/or every p in £2. 

PROOF. Choose any point £ £ Q and determine (by a diagonal proc­
ess) an increasing sequence of positive integers ki such that the limit 

£(ƒ) - lim M(ƒ, p, h) 
i—*0O 

exists for a countable dense set of functions ƒ in C(Î2). Then the limit 
L(f) exists for every /(EC(Q) and defines an invariant positive linear 
functional such that L(l) = 1. Hence L(f) —ffdfx for some normalized 
invariant Borel measure (x. If if is compact and M(XK, P) is not 
identically zero, the point p and the sequence {ki} can be so chosen 
that a = lim sup^*, M(XK, p, ki)>0. This implies that L(f) ^a when­
ever ƒèx#> a n d therefore fx(K)^a. 

A point p in Ö is called quasi-regular (pÇiQ) if the mean value 
M (J y p) is defined for every /GC(Î2). A Borel subset E of Q is said to 
have invariant measure one if fx(E) = 1 for every normalized invariant 
Borel measure /*. It follows from (2.1) that any such set is nonempty. 

(2.2) Q is a Borel set of invariant measure one. 
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PROOF. In order that p belong to Q it is sufficient that the limit 
M(f, p) exist for every ƒ belonging to a countable dense subset of 
C(O). For any/GC(Q) the set on which Af(/, p) is defined is an Fci 
subset of Q [17, p. 274], and by (1.1) this set has invariant measure 
one. Because Q is a countable intersection of such sets, it has the 
same two properties. 

To each quasi-regular point p corresponds uniquely a normalized 
invariant Borel measure fxp in 0, such that 

M(f, p) - ƒ ƒ*», 

for every/GC(Q). A quasi-regular point p is called a point of density 
(PELQD) if Hp(U)>0 for every open set U containing p. A quasi-
regular point p is called transitive (pGQr) if M* is an ergodic meas­
ure. A point p is called regular if it belongs to the set R — QD^QT* 

(2.3) QD is a Borel set of invariant measure one. 
PROOF. Let { Ui} be a countable base of open sets in Q, and for 

each i let ƒ* be a continuous function on 0 such that fl(p) =0 on 
Q - Ui and f(p) >0 on Ui. Then the set E{ on which either M(f\ p) 
> 0 or ƒ*(p) = 0 is an F9 relative to the set on which M(ƒ', £) is de­
fined, therefore an F„$ in Q. By (1.2), £»• has invariant measure one. 
Since 02> = Çnn<°l1 £t-, the conclusion follows. This result can be 
looked upon as a refinement of Poincaré's recurrence theorem (cf. 

(2.4) QT is a Borel set of invariant measure one. 
PROOF. A quasi-regular point p is transitive if and only if for each 

ƒ belonging to some countable dense subset D of C(Ö), M(f, q) 
—Jfdiip for all q except a set of /^-measure zero. Consequently, a point 
p is transitive if and only if pÇ:Q and 

f (/*(?) -r(^))2^p((7) = o 
JQ 

for every ƒ G^ . For any /GC(S), ƒ*(#) converges boundedly on Q to 
ƒ*(<?). Hence for any pGQ, 

f (ƒ*(?) - np)Yd^{q) - lim f (ƒ*(<?) - f*(p))*d»M 
J Q h J Q 

- lim lim - 2 (/*(TV) - ƒ*(#))'. 
* ft W t - 1 

The subset of Ç on which this iterated limit vanishes is an Fat set, 



120 J. C. OXTOBY [March 

and (1.4) shows that it has invariant measure one. 
(2.5) R is a Borel set of invariant measure one. 
(2.6) For any bounded Borel measurable function f on Q, ffdfip is a 

Borel measurable function of p on Q> and 

ffdv = ƒ (jfdnPJdix(p) 

for every finite invariant Borel measure y. 
PROOF. For any positive number M, the class of Borel measur­

able functions ƒ on £2, bounded by AT, for which the assertions of 
(2.6) are true is closed with respect to pointwise convergence, and 
includes all continuous functions ƒ with ||/|| SM. 

The next two theorems follow from (2.5) and (2.6). 
(2.7) For any Borel set i JCO, Vp(E) is Borel measurable on Q, and 

p,(E) —JRiip(E)dix(p) for every finite invariant Borel measure ju. 
(2.8) A Borel set EQti has invariant measure zero if and only if 

JJL(E) = 0 for every ergodic measure /*. 
For any ergodic measure /*, it follows from (1.1) that JUP=M for all 

p except a set of ju-measure zero. The set of all such quasi-regular 
points is called the quasi-ergodic set [4] corresponding to ju, and the 
part of this set contained in R is called the ergodic set corresponding 
to ju. Each of these sets is invariant and Fct (see (3.1)). Distinct 
ergodic measures correspond to disjoint quasi-ergodic sets. The 
ergodic sets (and the quasi-ergodic sets) stand in 1:1 correspondence 
with the totality of ergodic measures, and each ergodic measure 
vanishes outside the corresponding set. The ergodic and quasi-
ergodic sets corresponding to a measure do not differ very essentially, 
since Q—R has invariant measure zero, but both notions are con­
venient. I t should be noted that the points of any ergodic set all have 
the same orbit closure, whereas the points of a quasi-ergodic set need 
not. The ergodic sets constitute a partition of R, the quasi-ergodic sets 
a partition of QT-

3. Some additional properties of the set Q. 
(3.1) There exists a Borel measurable f unction f (p) from Q to the unit 

interval such that f(p) =f(q) if and only if jUp=Ma-
PROOF. Let {ƒ*} be a generating sequence in C(Q), that is, a se­

quence that spans a linear manifold dense in C(0), and assume 
further that ||/*|| g l for every i. In order that Mp=/x« it is necessary 
and sufficient that M(f\ p) = Jkf(ƒ*, q) for every i. For any pÇzQ the 
sequence {M(ƒ*, p)} defines a point 4>{p) of the Cartesian product of 
#o intervals each equal to [ — 1, l ] , and 0 is of first Baire class on 
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Q. (It follows that each quasi-ergodic set is G& relative to Q, and 
therefore 7<V$ in £2.) This product space can, in turn, be mapped onto 
[0, l ] by a 1:1 Borel measurable mapping [17, p. 358]. By composi­
tion one obtains a function ƒ(p) with the required properties. 

For any pÇzQ, the equation M (f, p) =ffdfip holds for every ƒ £ C(Q,), 
by definition. We now show that it holds also for some other functions. 

(3.2) If pÇzQ, the equation M(f, p)s=ffdfip holds f or any bounded 
Borel measurable function ƒ whose upper and lower limit functions are 
equal almost everywhere (JJLP). In particular, ixp(E) = AT(x#, p) for any 
Borel set E whose boundary has fxp~measure zero. 

PROOF. For any such ƒ, and any e > 0 , there exist continuous 
functions/i and f2 such that fx(p) ^f(p) ^ / 2(£) and ff2dixp<ffidy,p+e, 
and the conclusion follows immediately. 

The class of sets E for which fxp(E) can be identified with 
M(XE> P) is somewhat more extensive than is indicated by (3.2), 
although simple examples show that it does not necessarily include 
all compact sets. In this connection the following result is useful. 
We denote by 0+(p) the positive semi-orbit of p} that is, the set 
0+(p)=V? {T'p}. 

(3.3) For any compact set KQQÇI and any quasi-regular point p 
there exists a compact set K such that KoC.KCKo^JO+(p) and such 
that M(XK, £)=/z*(iq=MpC£o). 

PROOF. If p is periodic, we may take K = KQ. Otherwise, let Uk 
denote the 1/^-neighborhood of K0, and for each positive integer 
k l e t /* be a continuous function such thatjP(g) = l on Ko, fk(q)=0 
on Q— Uk, and 0Sfk(q) ^ 1 on 0. Let {Nk} be an increasing sequence 
of positive integers such that M(fk, p, n) >ixp(Ko) — 1/k for all n>Nk. 
Put 

K = K,\J u ( u {r^nntf*. 

Since K has only a finite number of points outside Uk, it follows that 
K is compact and that lim supn M(XK, P, n) ^fxp(Ko). If O^^ iV^+i , 
then either j f * ( 7 » = 0 or TlpEK, hence M(fk, p, n)^M(xK, p, n) 
for Nk<n^Nk+i, nP(Kç>) — l/k<M(xKt p, n) for all n>Nh, and 
therefore IXP(KQ) — M(XK, p)- The equation fip(Ko) = yP(K) results 
from the assumption that p is nonperiodic. 

(3.4) Iff is bounded and Borel measurable on 0, if p is quasi-regular, 
and if for every e > 0 there exists a Borel set E containing 0+(p) such 
that fJLp(E) > 1 -~€ and such that the contraction of f to E is continuous, 
then ffdnP = M(f, p). 
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PROOF. Let A be an upper bound of | f(q) | on Q. Choose a compact 
set KoCE with yp(K0) > 1 - € (cf. [12, §43(3)]) and construct a 
compact set K with the properties stated in (3.3). Since KQE, 
the contraction of ƒ to K is continuous and there exists a function 
g£C(Û) such that g =ƒ on i£ and ||g|| g-4. Since |jf—g| S2Axa-K, we 
have 

J fdfip - ƒ*(ƒ>) £ J fdiip - J grf/x, 

+ !«*(#)-ƒ*(#)! 

S 2Aixp(Q - X) + ƒ ^ - ft(f) 

+ 2i l-Jf(xi i-j: ,^*). 

The last term is equal to 2.4(1 — M(XK, p, k)) and therefore tends to 
2A(l—/x9(K)) as k—>«>. Hence the right member tends to a limit 
less than 4^4e, and the conclusion follows. For later reference (§7) 
we record the following corollary: 

(3.5) If f is bounded and Borel measurable on fl, if p is quasi-
regular, and if there exists an invariant Borel set E containing p such 
that iiP(E) = 1 and such that the contraction of f to E is continuous, 
then ffdn9 = M(f,p). 

4. Two characteristic properties of transitive points. For any 
P£zQ> for any/£C(£2), for any positive integer k, and for any a>0, 
we may define 

*»(#) = iim - Z ( M r ' # ) -ƒ*(#))* 
n-*to n t—1 

and 

4>k(p, «) = ô*{n: \fk(T*p) - f*(p) | > a}. 

(4.1) A quasi-regular point p is transitive if and only if <j>k(p)-*0 
as k—>oo for every /£C(Q). Moreover, <l>k(p) tends to zero uniformly on 
any quasi-ergodic set. 

PROOF. The first assertion was proved in the course of proving 
(2.4), the second follows from (1.5). 

From the defintions of <t>k(p) and \^k(pt a) it is easy to verify the 
inequalities 
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«V*(fc «) £ 4>*(p) S a* + 2\\f\\Wp, a). 

Hence (4.1) implies the following theorem: 
(4.2) A quasi-regular point p is transitive if and only if&k(p, a)—>0 

as k—*<x>, for every a>0 and for every /£C(Q). The convergence is 
uniform on any quasi-ergodic set. 

The obvious analogy of the conditions stated in (4.1) and (4.2) to 
mean convergence and convergence in measure suggests the follow­
ing definitions: 

DEFINITION. A sequence {Fk(n)} of f unctions of an integer n con­
verges in the mean if the limit F(n) =limk Fk{n) exists for every n, 
and the mean square difference 

1 n»*N 

lim - £(**(»)-*(!• ) )« 
tf-co N n-l 

exists for every k and tends to zero as k—> oo. 
DEFINITION. A sequence {Fk(n)} of f unctions of an integer n con­

verges in density if the limit F(n) «linn Fk(n) exists f or every n, and 
S* {n: | Fk(n) — F(n) \ >a} —>0 as k—>oo, for every a>0. 

(4.3) In order that a point £ £ Q be transitive it is necessary that for 
every fÇzC(Q) the sequence J\{Tnp)1 regarded as a sequence of f unctions 
of n, should converge in density and in the meant and it is sufficient 
that convergence in either sense should hold for a generating sequence of 
functions in C(O). 

We remark that in general convergence in the mean and con­
vergence in density are independent conditions, but that they are 
equivalent for any bounded convergent sequence such that the 
mean square difference exists for every k. 

5. Uniquely ergodic and strictly ergodic systems. We shall call a 
system (Q, T) uniquely ergodic if it has a unique normalized in­
variant Borel measure, or equivalently, if it has only one ergodic 
set. Following Nemyckiï and Stepanov [23], a system (fi, T) is 
called strictly ergodic if S2 consists of a single ergodic set. (Note that 
this usage differs slightly from that of Kryloff and Bogoliouboff [16].) 
Obviously any strictly ergodic system is uniquely ergodic, and any 
uniquely ergodic system is ergodic with respect to its unique measure. 

(5.1) If (Î2, T) is uniquely ergodic with measure ju, then for any 
ƒ G C(fl) the sequence {f*(p)} converges uniformly on fl toffdy, as k-* oo. 

PROOF. Suppose the conclusion false. Then for some gEC(Q) and 
some number a^fgdfi there exists a sequence {^}Cö and a se­
quence {ki} of positive integers such that &»--»oo and gki{pi)-^OL. 
We may assume in addition that the lim»- ƒ&<(£*) exists for every ƒ 
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belonging to some countable dense set in C(Q). I t follows that the 
limit L(f) =limifki(pi) exists for every fGC(Q>) and defines a positive 
linear functional on C(Q). By the Riesz theorem, L(f) =ffdv for some 
normalized Borel measure v> and v is invariant since L(fT)~L(f), 
hence *>=/*. In particular, taking ƒ = g, we find that L(g) =/gdju, and 
therefore a=/gdju, contrary to hypothesis. 

I t follows that in a uniquely ergodic system QT = (? = fl, QD~R, 
and £2 consists of a single quasi-ergodic set. In this case R is closed, 
since Q — QD is the union of all open sets of measure zero, and because 
R consists of a single ergodic set it follows that R is a minimal set 
[ ló] . (A nonempty compact set is called minimal if it is equal to the 
orbit closure of each of its points.) There can be no other minimal set, 
since (2.1) and (2.5) imply that R intersects every minimal set, 
hence: 

(5.2) A uniquely ergodic system has only one minimal set and only 
one ergodic set and these sets coincide, both being equal to R. 

A number of partial converses of (5.1) can be stated. I t is con­
venient to formulate a chain of equivalent conditions. 

(5.3) In a compact system (Q, T) the following conditions are pairwise 
equivalent: 

(i) (0, T) is uniquely ergodic, 
(ii) for each /GC(Q) , fk(p) converges uniformly on Q to a constant, 
(iii) for each /GC(Ö) there is a sequence {&»•} of positive integers 

such thatfki(p) converges pointwise on Ü to a constant, 
(iv) fl contains only one minimal set, and f or each / G C ( S ) the se­

quence \fk(p)} converges uniformly on 0, 
(v) R is a minimal set. 
PROOF. Tha t (i) implies (ii), (iv), and (v) follows from (5.1) and 

(5.2). The implications (ii)-»~(iii)-»-(i) are obvious. Any compact in­
variant set contains a minimal set, consequently if Ö contains only 
one minimal set then every invariant continuous function is constant, 
hence (iv) implies (ii). That (v) implies (i) is shown by the following 
theorem. 

(5.4) A minimal set is either an ergodic set or else it contains at least 
one non quasi-regular point. 

PROOF. Suppose that every point of a minimal set E is quasi-
regular. For e a c h / G C ( 0 ) the limit function/* is defined at every 
point of E and constant on each orbit. Since the orbit of each point 
of E is dense in E, it follows that ƒ* is either constant on E or else 
the contraction ƒ* | E is everywhere discontinuous. The latter alterna­
tive cannot occur, since ƒ * | E is the limit of a convergent sequence 
of continuous functions on a compact set. Consequently/* is constant 
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on E and each point of E has the same corresponding measure JJLP, 

equal to /A, say. E contains at least one regular point p0, and the 
orbit of po is dense in E, therefore /x is ergodic and positive for every 
open set that intersects E. Hence every point of E belongs to the 
ergodic set JEM corresponding to ix, and since Q — E is open and 
/ i (O-E) =0 it follows that £ = EM. 

(5.5) In a compact system (Q, T) the following conditions on a point 
pÇzti are pairwise equivalent: 

(i) for each f (EC'(Q) the sequence j\{Tnp) converges uniformly in n 
as k—+ oo, 

(ii) for eachfÇ:C{Çl) the functions fk(q) (& = 1, 2, • • • ) are equiuni­
formly continuous on Ü(p) ( — the orbit closure of p), 

(iii) the subsystem (0(p), T) is uniquely ergodic. 
PROOF, (i) implies that for all sufficiently large k, fk(q) is nearly 

constant on 0(p), hence (i) implies (ii). (ii) implies that some sub­
sequence {fki(q)} converges uniformly on 0(p) to a constant [9, 
p. 304], hence (ii) implies (iii). That (iii) implies (i) follows from 
(5.1). 

We shall call a point p strictly transitive if it satisfies condition (i) 
of (5.5). (4.2) shows that any such point is transitive, but the con­
verse is not generally true (see §10 for a counterexample). Following 
Hedlund [15] a point p is called almost periodic if for every neighbor­
hood U of p the set {nlTnpG U) is relatively dense. According to a 
theorem of Gottschalk [8], 0(p) is a minimal set if and only if p is 
almost periodic. From this result, together with (5.2) and (5.5), it 
is easy to deduce the following theorem: 

(5.6) In a compact system (0, T) the following conditions on a point 
£ £ Q are pairwise equivalent: 

(i) fi(p) is an ergodic set, 
(ii) the subsystem (0(p), T) is strictly ergodic, 
(iii) p is almost periodic and strictly transitive, 
(iv) p is regular and strictly transitive, 
(v) p belongs to a closed ergodic set. 
A system (Ö, T) is called uniformly-L-stable ("stable in the sense 

of Liapounov" [ó]) if the powers of T are equiuniformly continuous 
on Ö, that is, if for every €>0 there is a S>0 such that d(p, q)<d 
implies d(Tnp, Tnq) <e for every integer n. 

(5.7) If a compact system is uniformly-L-stable, then every point is 
regular and strictly transitive. 

PROOF. From uniform-L-stability it follows that every point p 
satisfies (5.5) (ii), and that if qÇzÔ(p), then pGÖ(q). Consequently 
every point is strictly transitive and its orbit closure is a minimal set. 
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The conclusion then follows from (5.6), and has the following corol­
lary: 

(5.8) If a compact system (Q, T) is uniformly-L-stable and has at 
least one dense orbit, then the system is strictly ergodic. 

I t is well known [13] tha t any system that fulfills the hypothesis 
of (5.8) is homeomorphic to a system (G, T), where G is a (mono-
thetic) compact topological group and T is a translation of G by an 
element whose powers are dense in G. Hence a proof of (5.8) can also 
be based on the uniqueness of Haar measure. 

6. Uniform ergodic limits. An important difference between the 
Birkhoff ergodic theorem (1.1) and the mean ergodic theorem (1.3) 
is that the latter implies tha t for any f(£Lq the averages 

ƒ..«(#) — Z f{T*p) (« > m) 
n — m <-m+i 

converge (in Lq) as n — m—x», in other words, the sequence ƒ*(Tnp) 
converges (in Lq) uniformly in n as k—»«>. On the other hand, (1.1) 
implies only that this sequence converges (a.e.) as yfe—»oo for any 
fixed value of n, and simple examples show that in general there is 
no uniformity in n, even for strictly ergodic systems. (For example, let 
T be an irrational rotation of the circle, let Un be the union of the 
first 2 n + 1 images of some interval of length 4"**"1, and let f(p) be the 
characteristic function of the set Z7=UJ°£/n. For every point p and 
positive integer k there is a positive integer n such that fk(Tnp) = 1, 
but for almost all p the lim& fk(p) = s m(J7)^ l /2 . Consequently the 
convergence of fk(Tnp) is nonuniform in n for almost all p.) Never­
theless, it is reasonable to ask for what compact systems it can be 
asserted that for any continuous function ƒ the averages ƒ„,m (p) con­
verge a.e. as n — m—*<x>. An answer to this question can be formu­
lated as follows: 

(6.1) In any compact system (Q, T) with normalized invariant Borel 
measure ju, the following conditions are pairwise equivalent: 

(i) for eachfÇzC(Q), {fn,m(P)} converges a.e. as n--m—*oot 

(ii) almost all points are strictly transitive, 
(iii) almost all points belong to closed ergodic sets. 
PROOF, (i) implies that there is a set E with ix(E)~ 1 such tha t 

for each p&E and for each ƒ belonging to a countable dense subset 
of C(Q) the sequence fk(Tnp) converges uniformly in n as k—>oo. I t 
follows that the same conclusion holds for every /GC(Ö) , hence 
every point of E is strictly transitive, and (i) implies (ii). (ii) implies 
(iii) by (2.5) and (5.6). The reverse implications are obvious. 
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(6.2) In any compact system (Î2, T) the following conditions are 
pair wise equivalent: 

(i) for any /GC(O) and for any finite invariant Borel measure jx, 
{fn,m(p)} converges a.e. as n — m—><x>, 

(ii) every ergodic set is closed, 
(iii) the family of minimal sets and the family of ergodic sets coincide. 
The following definition was introduced by Fomin [ô]. 
DEFINITION. A compact system (0, T) is mean-L-stable {u stable in 

the mean in the sense of Liapounov") if f or every e>0 there is a ô>0 
such that d(p, q)<ô implies d(Tnp, Tnq)<€ for all n except a set of 
upper density less than e. 

(6.3) If a compact system is mean-L-stable, then f or each /GC(Ö) 
the sequence {fk(p)} is equiuniformly continuous and uniformly con-
ver gent on Q, every ergodic set is closed, every quasi-ergodic set is closed, 
and every point is strictly transitive. 

PROOF. The equiuniform continuity of the functions fk(p) 
(k = l, 2, • • • ) is an easy consequence of mean-Z-stability. From 
(5.5) (ii) it follows that every point is strictly transitive, and the uni­
form convergence of {ƒ&(£)} then follows from equicontinuity and 
pointwise convergence. Consequently ƒ* G C(£2) whenever ƒ £ C(Q), 
and therefore every quasi-ergodic set is closed. That every ergodic set 
is closed follows from (5.6) (iv). 

The next two theorems are corollaries of (6.3). 
(6.4) If a compact mean-L-stable system has at least one dense orbit, 

then it is uniquely ergodic. 
(6.5) If a minimal set is mean-L-stable, then it is strictly ergodic (cf. 

[6]). 
The last three results should be compared with (5.7) and (5.8). 

Trivial examples (e.g. a system consisting of two invariant points p 
and q and an orbit {pn} such that pn-*p and p-.n-±q) show that 
mean-L-stability is not a necessary condition for every ergodic set 
to be closed, and (same example with p = q) that the hypothesis of 
(6.4) does not imply the conclusion of (6.5). Interesting examples of 
minimal sets that are mean-L-stable but not uniformly-L-stable are 
provided by the Sturmian minimal sets studied by Hedlund [lS]. 

7. Noncompact systems. If T is a homeomorphism of a complete 
separable metric space 0, the system (0, T) need not admit a finite 
invariant Borel measure. However, Fomin [4] has shown that in 
case such a measure exists, the main theorems of Kryloff and 
Bogoliouboff remain true provided certain definitions are appropri­
ately generalized. (For a generalization in another direction, see 
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[29].) In this section we shall show how the study of such systems 
can be reduced to that of compact systems. At the same time a 
slightly greater degree of generality is attained, since it turns out to 
be unnecessary to postulate completeness. 

By a Borel system we shall mean a system (£2, T) where £2 is a Borel 
subset of some complete separable metric space, and T is a homeo-
morphism of £2 onto itself. Two such systems (£2, T) and (£2', T') 
are called homeomorphic if there exists a homeomorphism of £2 onto 
£2' under which 7" corresponds to T'. (£2', T) is called a subsystem of 
(£2, 2") in case £2' is a Borel subset of £2 invariant under T. 

(7.1) Any Borel system (£2, T) is homeomorphic to a subsystem of 
the compact system (£2*, S) where £2* is the Cartesian product of No 
Hilbert cubes, and S is the shift transformation on £2*, i.e., S{un} 

PROOF. By Urysohn's theorem, we may assume that £2 itself is a 
subset of the Hilbert cube. Then the correspondence p-^{Tnp} de­
fines a 1:1 bicontinuous mapping of £2 onto a Borel subset £2' of £2* 
under which T corresponds to 5. 

I t is clear that the invariant Borel measures of the system (£2, T) 
correspond to those of the system (£2*, S) for which /x(£2* — £2') = 0 . 
Consequently, a necessary and sufficient condition that (£2, T) 
admit no finite invariant Borel measure is that the set £2' have in­
variant measure zero. This will be the case if and only if every com­
pact subset of £2' has invariant measure zero, and for this it is neces­
sary and sufficient that M(XK>, p') = 0 for every compact set i£'C£2' 
and for every £'££2' , by (2.1) and (1.2). Hence we obtain the fol­
lowing generalization of (2.1) (cf. [26]). 

(7.2) A necessary and sufficient condition that a Borel system (£2, T) 
admit no finite invariant Borel measure is that M(XK, p)=:0 for every 
compact set KQti and for every point £££2. 

Let us now denote by C(£2) the space of all bounded real-valued 
continuous functions on £2. The definition of a quasi-regular point 
requires modification, since it is no longer true that M(f, p) can al­
ways be represented as an integral. We follow Fomin [4] in adopting 
the following definition: 

DEFINITION. A point pÇ^tiis quasi-regular with respect to the Borel 
system (£2, T) if 

(1) the mean value M(f, p) exists f or eachfÇzC(ti), and 
(2) for every e > 0 there is a compact set KQQ such that M(XK, p) 

> l - € . 

I t is clear that this definition is equivalent to that of Kryloff and 
Bogoliouboff (cf. §2) in case the system is compact. That it is an 
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appropriate generalization is shown by the following theorem. 
(7.3) If (£2', T) is a subsystem of a compact system (A*, T)> then a 

point pÇzQ' is quasi-regular with respect to (12', 7*) if and only if p is a 
quasi-regular point of (Q*, T) and M P (B ' ) = 1. 

PROOF. The necessity of both conditions is clear ; that they are suffi­
cient is shown by (3.3) and (3.5). 

I t follows that with any quasi-regular point of the Borel system 
(Q, T) there is associated uniquely a normalized invariant Borel 
measure fxp such tha t ffdfxp = M(f, p) for e v e r y / £ C ( 0 ) , and that 
the quasi-regular points are the only points for which M(f, p) is 
denned on C(fl) and representable in this way. We remark that (2) 
cannot be weakened to the requirement that M(XK, P)>0 for some 
compact set K, since it is possible for a quasi-regular point p in Q* 
to be such that 0</xp(Q') < l . 

The set Q' of quasi-regular points of (£2*, T) for which ixp(Çlr) = 1 
is a Borel subset of Q*, by (2.7), and therefore the set Q of quasi-
regular points of (Q, T) is a Borel subset of Q. If £ is any ergodic 
set of (Q*, T), with ergodic measure JU, then either JU(£P \Q ' ) — 1 or 
/ z ( £ n Q 0 = O ; hence M C O ' - Q O - O . I t follows from (2.8) that Q'~Q' 
has invariant measure zero, and therefore Q has invariant measure 
one relative to (0, T). Similar reasoning shows that if points of 
density, transitive points, and regular points are defined as in §2, 
then not only (2.2) but also (2.3), (2.4), and (2.5) hold for any Borel 
system. The remaining theorems of §2 then follow at once from the 
corresponding theorems for compact systems. It should be em­
phasized, however, that all of these theorems are vacuous unless the 
Borel system admits at least one finite invariant measure. 

8. Decomposition into a direct sum of ergodic systems. One of the 
most fruitful conceptions in ergodic theory has been the idea that 
any system can be regarded as a combination, in some sense, of 
ergodic systems. The first result of this sort was obtained by von 
Neumann [24]. For compact systems, the theory of Kryloff and 
Bogoliouboff gave a still more detailed analysis. Subsequently, 
Halmos, Ambrose, and Kakutani [10; 2] obtained von Neumann's 
theorem in a purely measure-theoretic form, with no explicit topo­
logical assumptions. I t was for this purpose that Halmos introduced 
the notion of a direct sum of measure spaces. More recently, the 
work of Dieudonné [3; 11], Nikod^m [25], and Maharam [18] on 
Boolean c-algebras has led to a more precise version of the decom­
position theorem for measure spaces, in which some of the direct 
summands are combined into a direct product. In this section and the 
next it will be shown how some of these decomposition theorems for 
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measure spaces can also be obtained from the ergodic set decomposi­
tion. 

Let (0, T) be a compact system, and let R be the set of regular 
points. Let ƒ be a Borel measurable mapping of R into the unit 
interval, such that f(p) =ƒ(<?) if and only if /Xp=/*ff (cf. (3.1)), and 
let X denote the range of/. Let g be a 1:1 Borel measurable mapping 
of R onto the unit interval [17, p. 358]. Then the equations x—f(p)f 

y=g(p) define a 1:1 Borel measurable mapping <f> of R onto a Borel 
subset F of the unit square, such that for each x£X the ergodic set 
f~l(x) is mapped onto the x-section Yx of F. Let Px denote the Borel 
measure in Yx corresponding to the ergodic measure in /~1(^)« Let 
X be the Borel field consisting of all sets A QX such that f~l(A) is a 
Borel subset of JR. Corresponding to any invariant Borel measure 
JU in Ö define v(A) =nif~\A), for every .4 E X . Then for any Borel 
set EC F we have, by (2.7), 

n{4r*E) = ftxp(<trm)dn{p) 
J R 

= f Pf(P)(E-Y/(p))dfi(p) - Ç vx{E-Yx)dv{x). 
J R J X 

Thus 4> represents the measure space (R, /x) as a direct sum of the 
measure spaces (F*, vx) over (X, X, v). T corresponds to a Borel 
measurable transformation T'*=<t>T<irl of F that leaves invariant 
each x-section Yz, and on Yx is ergodic with respect to vx. Thus 4> 
represents (R, T, JJL) as a direct sum of ergodic systems. I t should be 
noted that the same decomposition serves for every finite invariant Borel 
measure p,, the only variable term being the measure function v. 
Moreover, every finite measure v on X corresponds in this way to one 
and only one invariant measure fi. For if E is any Borel subset of R, 
then fXp(E) is measurable relative to /""^X) , hence vx(<f>(E) • Yx) is 
measurable X, and for any finite measure v on X the equation 

M ( E ) = ( vx(<KE).Yx)dv(x) 

defines a corresponding invariant Borel measure in R. A 1:1 cor­
respondence is thus established between the invariant Borel measures 
H of the system (0, T) and the finite measure functions v on the 
measurable space (X, X). 

This correspondence between jx and v determines at the same time a 
correspondence between their completions /i* and v*, and <f> repre­
sents (i?, ju*) as a direct sum of the measure spaces (Fœ, v%) over 
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(X, v*)y in the sense that if E is measurable /** then <£(E) is measur­
able v* for all x except a set of z>*-measure zero, and v*{<f>{E) • Yx) is 
a ^-measurable function of x whose integral is equal to /x*(E). 

Now let T be any 1:1 measure-preserving transformation on a 
normal measure space (Q, m*). (A normal measure space is one that 
is isomorphic to the unit interval, cf. [ l3] . Two measure spaces are 
said to be isomorphic if there exists a 1:1 measure preserving trans­
formation from almost all of one to almost all of the other. Two 
systems (£2, T, p) and (Ö', J", fi') are isomorphic if T corresponds to 
T' under some isomorphism.) We are seeking an isomorphic repre­
sentation of (0, T, m*), hence we may assume from the outset that 
Ö is the unit interval and that m* is Lebesgue measure. Moreover, 
up to isomorphism, T can be replaced by an equivalent 1:1 Borel 
measurable transformation. For each £ £ Q , the sequence of numbers 
{Tnp} may be regarded as a point 4>i{p) of the No-dimensional cube 
fl00, and then fa is a 1:1 Borel measurable mapping of 0 onto a Borel 
subset of Q00 (cf. [17, pp. 290, 397]). Under fa, the transformation T 
corresponds to the shift transformation 5, which is a homeomorphism 
on Î200. If /i* denotes the completed Borel measure in Q00 that cor­
responds to m* under <£i, then the system (Ö, T, m*) is isomorphic 
to (Ö00, S} ix*). We have already shown how the latter system can be 
represented as a direct sum of ergodic systems. In this way the fol­
lowing theorem of Ambrose, Halmos, and Kakutani [2] is obtained 
as a consequence of the ergodic set decomposition. 

(8.1) Any normal system (0, T, m*) is isomorphic to a direct sum of 
ergodic systems. 

We remark that if T is a 1:1 Borel measurable transformation on 
a Borel subset Q of a complete separable metric space, the system 
(Q, T) can be mapped by a 1:1 Borel measurable mapping onto a 
subsystem (Q', T') of a compact system by the device used in §7. 
The representation of a compact system described above yields a 
corresponding representation of (Q, T) as a direct sum of ergodic 
systems, simultaneously for every finite invariant Borel measure. In 
other words, the possibility of a universal decomposition into 
ergodic parts is not limited to compact systems, but extends to any 
system that is "Borel isomorphic'' to a subsystem of a compact 
system. 

I t should also be remarked that the possibility of representing a 
normal system by an isomorphic continuous transformation is not 
limited to systems with a discrete time; Ambrose and Kakutani 
[ l ] have shown that any measurable flow in a normal measure space 
is isomorphic to a continuous flow. 
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9. Direct product representation. The following theorem is the 
principal special case of a theorem of Maharam [18, Theorem 6]. 
The proof given here was suggested by a somewhat similar proof ob­
tained by Kakutani. 

(9.1) If (0, r , w*) is a normal system such that (I) no subsystem is 
ergodic relative to m*, and (2) almost all points are nonperiodic, then 
(Ö, T, m*) is isomorphic to a system (Q', T', m$), where Q' is the unit 
square with plane measure m*, and T' is a transformation that leaves 
every x-section of Q' invariant and on it is ergodic with respect to linear 
measure. 

It should be remarked that both conditions (1) and (2) are ob­
viously necessary, but that neither of them is seriously restrictive. 
Without them, it is not hard to see that the system can be decom­
posed into a direct sum of systems all but one of which are compara­
tively trivial, namely, either periodic or ergodic on an interval. The 
remaining summand, if present, is covered by the above theorem. 

In §8 it was shown that any normal system is isomorphic to a 
compact system (fl00, 5, At*). Under the added hypotheses (1) and 
(2) each ergodic set of the latter system has ju*-measure zero, and the 
set of periodic points has ju*-measure zero. Hence (9.1) is a conse­
quence of the following slightly more precise theorem. 

(9.2) If (fl, T, fx) is a compact system with normalized invariant 
Borel measure /x, and if each ergodic set and the set P of periodic points 
has ix-measure zero, then there exists a 1:1 Borel measurable mapping of 
almost all of R onto a Borel subset W of the unit square such that (i) 
ix corresponds to plane Borel measure m2 in W, (ii) T corresponds to a 
transformation of W that leaves every x-section of W invariant and on it 
is ergodic with respect to linear Borel measure m, and (iii) m is the only 
normalized invariant Borel measure on any x-section of W. 

PROOF. We start with the direct sum representation already ob­
tained in §8, but restrict <l> to the set Ro—R—P. Under present 
hypotheses the measures v and vx vanish on every finite subset of X 
and Yx respectively. For any (x, y)ÇzY define 

F{x) = v(X- [0, %)) 

and 

G(xty) = F.(F, .[O f l]X [O,?)). 

Then F(x) is a monotone increasing continuous function of x on X, 
and for each xÇzX, G(x, y) is a monotone increasing continuous 
function of y on Yx. Both functions are Borel measurable on F, the 
first because it is continuous, and the second because it corresponds 
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under 0 to the Borel measurable function /XpGr̂ tO, g(P))) on 2?0 

(cf. [17, p. 285]). Consequently the equations x'=*F{x), y'~G(x, y) 
define a Borel measurable mapping \p of F onto a subset Z of the unit 
square, yp is not necessarily 1:1, but we shall show that it can be 
made so by suitably contracting its domain. We first show that it 
preserves measure. 

Consider any rectangle /== [0, a)X[0, 6), where 0 < a < l and 
0 < 6 < 1 . Let a' = sup \x\F(x) < a } , and for each x&X let b'(x) 
= sup {y'(x, y)(E.Yzt G(x, y)<b}. Then yp~lJ consists of all points 
(x, y)GY such that Ogx<a ' and 0^y<b'(x). For any xG-X", 
using the fact that each point has ^«-measure zero, we have 
v.(Ym- [0, 1] X [0, &'(*)) «6. Consequently ^ V ) =/r.[o..'>(*. 
.[0, 1]X[0, &'(*)))<*K*) =&•*(*• [0, a'))=&-a«m,(J). Let £ be 
the class of Borel subsets E of the square such that ii(\f/~'1E) = ni2(E). 
We have just shown that £ contains all rectangles / , and since £ 
contains proper differences, countable decreasing intersections, and 
countable disjoint unions of its members, it follows that £ includes 
all Borel subsets of the square [12, §5(2), §6(3)]. 

Similarly, if x' is any value for which x = F~1(xf) is single-valued, 
and if £* denotes the class of Borel subsets E of {x'} X [0, l ] such 
that vx{yl/~lE)=m{E)1 then £« includes all intervals {x'}x[0, &), 
0<&<1, and has closure properties similar to those of £. It follows 
that vx{yp~1E)—m{E) for every Borel subset E of Zx>. 

Let ZQ be the set of all points of Z where \lrl is multiple-valued. 
The monotoneity of F and G shows that for all but countably many 
values of x\ F~l{x') is a single x-section of F, and that on any such 
x'-section of Z, Z0 is at most countable. Since Z0 is an analytic set 
[17, p. 402] it follows that w*(Z0) =0. Enclose Z0 in a Borel set B0 

with W2(50)=0, and choose B0 so that every ^'-section either con­
tains Zx> or has linear measure zero. (It follows that B0 includes all 
x'-sections Zx> for which f~l{x') is multiple-valued.) Put F i = F 
-\l/-l(Bo) and F2 = n*00(r ,)nF1 . Then F2 is a Borel subset of F with 
M( Y2) = 1, and \[/ is a 1:1 Borel measurable mapping of F2 onto a Borel 
subset Z2=^(F2) of the unit square. Pefine T"^ypT^-1 on Z2. 
Then the systems ( F2, Z", ix) and (Z2, J1", ra2) correspond under $, 
and likewise {{Y^)X1 T', vx) and ((Z2)*', T", m) for every x for which 
(F2)« is nonempty. Moreover, m is the only normalized invariant 
Borel measure in (Z2)x>, since vx is the only such measure in (Y%)x. 
To complete the proof of (9.2) it suffices to follow ^ by a trivial 
1:1 Borel measurable transformation of the square that involves 
only the values of xf on a nullset and maps Z2 onto a set W with 
the property that Wx is nonempty for every x in 0 ^ # ^ 1 . 
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10. The shift transformation on sequence space. Let X be the set 
of all mappings x(n) of the integers into the set {0, 1}, and let T be 
the transformation that takes x(n) into x(n+l). If we define d(xt y) 
= max { l / ( | n | +l):xn9

£yn} for any two points x?*yt then X is a 
compact metric space and T is a homeomorphism. In this system it is 
easy to characterize points of the various kinds discussed in §§2 and 
5. For instance, a point x is quasi-regular if and only if each block of 
terms that appears in the sequence x(n) recurs with a definite limiting 
frequency ; x is strictly transitive if and only if for each block B and 
€>0 there is a positive integer k such that in any sequence of k 
successive terms of x(n)f B occurs with a frequency that differs by 
less than € from the frequency with which B occurs in any other 
sequence of k successive terms of x(n). On the basis of (4.3) it is easy 
to formulate similar characterizations of transitive points and 
points of density. 

The almost periodic points of this system are the same as recurrent 
sequences in the sense of Birkhoff (cf. [15]). A number of examples 
and classes of such sequences have been defined and studied by 
Morse [19], Morse and Hedlund [20; 21; 22], Garcia and Hedlund 
[7], and Robbins [27]. In most of these examples it is not hard to 
verify that the sequence defines a point that is not only almost 
periodic but also strictly transitive. Hence the orbit closure of such a 
point is a minimal set on which T is strictly ergodic. However, it is 
also possible to exhibit a minimal set that is not strictly ergodic. The 
first such example was constructed by Markhoff (cf. [23, p. 533]). 
We shall give a similar example in the system (X, T). For this pur­
pose it suffices to define a point x that is almost periodic but not quasi-
regular (cf. (5.4)). 

Let {ki} (i*z0) be a sequence of positive integers such that k% 
divides ki+i and such that 23<li &»-i/&»^l/12 (e.g., the sequence 
ki=*2W+9)f2). Let n and m denote variable integers, and for each pos­
itive integer i define 

Ei = U {n: | n — mh\ S £*-i}. 
—00<l»<00 

Since Ei includes all n with | n | £ fef-i, and since ki-> <*>, it is clear that 
for each integer n there is a least positive integer p—p(n) such that n 
belongs to Ep. Define x(n) =0 or 1 according as p(n) is even or odd. 
We shall show that this point x has the required properties. 

In the first place, each of the sets Eu E2l • • • , Ep is invariant 
under translation by kp. Hence if p(n)~p and mssn (mod kp) then 
p(rn)—p. Consequently, if m^n (mod ht) and |n | sS&t-i, then 
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p—p(n) ^i, kp divides ki, m=n (mod kp), p(m) =/>(w), and therefore 
x(m)=x(n). It follows that d(x, Tnx)^l/(l+ki^) for all n 
s-0 (mod ki). This shows that x is almost periodic (in fact, regularly 
almost periodic, as defined in [7, p. 957]). 

Secondly, if 1 ^j^i the number of elements of Ej in the interval 
0<n^ki is exactly (£</&/) (2Jfe/_i+l). Hence an upper bound to the 
number of elements of Ei\JE%<J • • • \JEi in the interval 0 <n £ki is 

la — 7 — ^ 3*< 2^ ~ 7 ~ < V *<• 

It follows that £(w) = i + l for at least 3/4 of the numbers n in the 
interval 0<nSki. Consequently, 

Ki n -1 **+l n -1 
è y (» - 1, 2, • • • ). 

But x(n) —x{Tnx), where x denotes the characteristic function of the 
set of points y SX for which y(0) = l, and therefore M(x, x) is un­
defined. Since x îs a continuous function on X this shows that # is not 
quasi-regular. 
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