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Introduction to Hubert space and the theory of spectral multiplicity. 
By P. R. Halmos. New York, Chelsea, 1951. 114 pp. $3.25. 

There is little doubt that the author of this book enjoyed himself 
thoroughly during its preparation. Reading the result afforded this 
reviewer considerable pleasure. In one hundred and nine well-packed 
pages one finds an exposition which is always fresh, proofs which are 
sophisticated, and a choice of subject matter which is certainly 
timely. Some of the vineyard workers will say that P. R. Halmos has 
become addicted to the delights of writing expository tracts. Judging 
from recent results one can only wish him continued indulgence in 
this attractive vice. 

The present work may confidently be recommended. However, be
ginners in the field should be cautioned before they rush off to secure 
a copy. Unless one is equipped and in training, one should not 
at tempt the expedition. One must not be misled by the title. For this 
introduction to Hubert space, one has to be an expert in measure 
theory. As a matter of fact it is best to have read the author's book 
on measure theory or its equivalent. One has to know enough about 
Banach spaces to be conversant with the Riesz representation 
theorem for the linear functionals on the space of continuous func
tions. We would be ready to wager that most young mathematicians 
learn that theorem subsequent to the theorem on the spectral resolu
tion of hermitian operators and not prior to it—which is the scheme 
of things here. But, for those who know this material and wish an 
excellent introduction to multiplicity theory, this tract is just right. 

The subject matter of the book is funnelled into three chapters: 
The geometry of Hubert space; the structure of self-adjoint and 
normal operators; and multiplicity theory for a normal operator. For 
the last, an expert knowledge of measure theory is indispensable. 
Indeed, multiplicity theory is a magnificent measure-theoretic tour 
de force. The subject matter of the first two chapters might be said to 
constitute an introduction to Hubert space, and for these, an a priori 
knowledge of classic measure theory is not essential. Thus one may 
question the author's decision to unveil his virtuosity in this direc
tion sooner than was necessary, or perhaps desirable. 

Chapter I has some features which differentiate it from previous 
texts in this domain. The Hubert spaces under consideration are 
not assumed separable. The handling in proofs and notation from 
this point of view is completely successful. For another thing, con
siderable use is made of the parallelogram identity for vectors: 

| | /+dl 2+ll / -~êl l 2 = 2 l l / | |2+2 lkll2- T h e s P i r i t o f t h i s a n d similar identi
ties has certainly pervaded many smoke-filled colloquium rooms in 
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the past decade and it is a pleasure to see it make its bow in book 
form. In terms of it certain proofs are very satisfactory. See, for 
example, the theorem concerning the existence of a vector per
pendicular to a proper closed linear manifold. 

As stated above, the second chapter is devoted to self-adjoint and 
normal operators. The bounded case only is treated. This calls for the 
usual preliminary development of a theory of projections. Also dis
cussed are the elementary properties of the spectrum of an operator. 
In this connection the author gives a bizarre proof of the famous 
elementary theorem that if | | l— A\\ < 1 , then A~l exists. The series 
(1—x)~1= 23o° %n is probably the most extensively generalized in all 
of mathematics. Why not use it here instead of relying for a proof on 
Theorem 21.3, or any other for that matter? As mentioned before, 
the proof of the spectral theorem is based on "the external analytic 
crutch of measure theory." The author seems to regret (p. 71) "the 
lot of apparently formidable machinery" that he used ; thus we shall 
not overburden his conscience with further allusion to the matter. 

Before setting forth on the arduous journey through multiplicity 
theory, the reader is advised to be well-rested and of strong de
termination. Though the fundamental ideas and the ultimate result 
are quite reasonable and lucid, one's patience is often taxed by the 
annoying complexity inherent to the problem. Thus, such simple phe
nomena as those concerning orthogonality of manifolds can be com
pounded with such tirelessness as to wilt one's spirit. Before one 
reaches the point of no return in the proof, the temptation is great 
to let intuition become master over logic and consign mere proof to 
the antipurgatory. The original results in multiplicity theory were 
given by Hellinger in 1909. The treatment of non-separable spaces 
seems to be essentially more difficult. The first results and subse
quent refinements are due to Wecken (1939), Nakano (1941), and 
Plessner and Rohlin (1946). I t is these authors who have most in
fluenced the present treatment. The problem here considered may 
be phrased in the form : Determine the unitary invariants of a single 
normal operator. That is, given two normal operators A and B, find 
significant, satisfactory, necessary, and sufficient conditions that for 
some unitary operator [/, B = U~lA U. For the finite-dimensional 
case, the answer is obviously that A and B should have the same 
spectral (or characteristic) values and that the manifold of vectors 
associated with each spectral value should have the same dimen
sionality for A as for B. The infinite-dimensional situation is enor
mously more complicated. The reader who is interested in a treat
ment which contains the present one as a special case, indeed, gives 
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the unitary invariants of any commutative W* algebra, should con
sult the recently published paper of I. E. Segal (Memoirs of the 
American Mathematical Society, no. 9, II , 1951). 

The general result of the third chapter should be described briefly. 
Suppose that X is a space, S is a cr-Boolean algebra of sets over X> 
and that ju is a finite measure on 5. Consider the Hilbert space 
L2(/x) of square integrable functions on X, In this space one may 
construct for every set M in S the projection operator E(M)f 
= XM*/ where ƒ is arbitrary in L2(M) and XM is the characteristic 
function of M. E{M) is an example of a spectral measure. Now sup
pose u is a cardinal number. Form the direct sum of u copies of the 
space L<L(IX)—this leads to phenomena of multiplicity u. Consider then 
the spectral measure defined by E(M){fk} = {xM'fk}* Here {ƒ&} is 
the general element in the direct sum space and k is an index ranging 
over a set of cardinal number u. Finally, let /ULJ be orthogonal finite 
measures on 5, for every j let u3- be a cardinal number, and construct 
the spectral measure E(M){fjk} = {XM •ƒ/*}• The latter is called the 
canonical example of a spectral measure. 

Now let A be a normal operator. Then there is associated with A 
a complex resolution of the identity E(\) such that A = fXdEÇK). If 
M is a Borel set in the complex plane, E(M) is a spectral measure. 
The fundamental result of multiplicity theory is essentially that by a 
suitable isomorphism (unitary transformation between Hilbert 
spaces) this spectral measure is equivalent to a suitable canonical 
spectral measure. A critical and classical step in going from the spec
tral measure E(M) associated with a normal operator A to an 
ordinary measure jx is the following: If x is a vector in the under
lying Hilbert space § , then ix(M) = (E(M)x, x) is a finite measure. 
Here M is an arbitrary Borel set. Furthermore, if we write U%M 
=*E(M)x, then U may be extended to an isomorphism from the 
space I/2(M) onto the closed linear manifold of § generated by all ele
ments of the form E(M)x. For this isomorphism Z7, one has 
U^EiM^Uf—XM-f- This fact is the building block for multiplicity 
theory. 

The author's treatment of multiplicity theory seems to be quite 
satisfactory. Although the material is complicated, it is subdivided 
into pleasant compact packages which the reader absorbs as he pro
ceeds on his journey. The author meanwhile is a veritable ringmaster 
who marshals his troupe of techniques, cracking the whip over each 
aspect of the theory in turn, thus keeping it a t the proper pitch for 
its part. Several well written sections give the beginner a much de
sired heuristic approach to the situation. 
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The book closes with an informal discussion of source material 
and references and a bibliography containing 52 entries. Approxi
mately one-third of these are vital to the present undertaking, the 
others being either marginal in value or representing a caprice of the 
author. No errors major or minor were detected, a fact which is 
only one indication of the very careful way in which the booklet was 
prepared. Most pages exhibit a zest for play as well as work which is 
refreshing. Indeed, at times one may have a vague apprehension 
that the author is preparing a prank or baiting a trap; however it 
seldom turns out to be more than a friendly tweak given with a wink. 
Such an intimate style, in the present desert of works written with an 
unexceptionable scientific detachment, is warmly welcome. It is cer
tainly a facet to the general success enjoyed by Halmos , previous 
books. 

E. R. LORCH 

A theory offormal deducibility'. B y H . B.Curry. (Notre Dame Mathe
matical Lectures, no. 6.) University of Notre Dame, 1950. 9 + 126 
pp. 

The monograph contains a detailed account of the predicate 
calculus as presented by Gentzen (Math. Zeit. vol. 39 (1934) pp. 176-
210, 405-431) in a sequence calculus in which the rules of inference 
follow in a natural way from the intended meanings of the logical 
connectives. However, Curry's treatment differs in several major 
respects from earlier ones. The predicate calculus is approached as 
an episystem over a basic formal system of elementary propositions. 
Various portions of the classical and intuitionistic systems are studied 
separately. There is a discussion of alternative concepts of negation. 
And a final chapter suggests a new approach to modal logic. 

A formal system is specified by a primitive frame which defines 
inductively terms, elementary propositions, and theorems. (The 
author develops here notions presented in a paper in Bull. Amer. 
Math. Soc. vol. 47 (1941) pp. 221-241.) In Curry's usage, the Hil-
bertian formal systems have as elementary propositions, propositions 
of the form "A is a provable formula," the formulas being terms in 
Curry's terminology. In studying a formal system it is customary and 
convenient not to limit attention only to elementary propositions, 
but to consider in addition compound propositions such as "Not for 
all formulas A, is A provable." These compound propositions are 
formed from the elementary ones by use of the logical connectives. 
Curry speaks of this broader system as an episystem over a formal 
system. (An episystem is not to be confused with a metasystem over 


