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tionary either for the student or the working mathematician. In its 
present form it can be of considerable help, but it can hardly be 
considered authoritative. I t is to be hoped that a second edition of 
increased scope and greater accuracy will be prepared. If the defi
ciencies of the present edition can be remedied and its good qualities 
retained, it will be of great value to mathematicians. 

R. P. BOAS, J R . 

The mathematical theory of plasticity. By R. Hill. Oxford, Clarendon 
Press, 1950. 10+356 pp. $7.00. 

Although it is more than eighty years since the foundations of the 
theory of plasticity were laid by Tresca, Saint Venant, M. Levy, and 
others, plasticity is still a very young science. After a first strong 
wave of interest (about 1913-1930), work in this field has slowly but 
steadily increased and recent years have seen a marked upsurge of 
interest; this can best be illustrated by the fact that in 1950 no fewer 
than four very serious books on the subject appeared, by A. M. 
Freudenthal (Wiley), by R. Hill, by A. Nadai (McGraw-Hill), and 
a comprehensive survey report by P. G. Hodge (Brown University 
Notes); in 1951 followed a textbook by Prager and Hodge (Wiley). 
Among those works Freudenthars book differs from the others by 
its wider scope; plasticity as understood in the other books forms 
only a chapter, although one of central importance, in Freudenthal's 
approach, since his viewpoint is primarily that of a physicist and 
technologist. Hill's book is an advanced and comprehensive text, in
tended as an orientation for engineering scientists and applied mathe
maticians rather than as a textbook for students; on the other hand 
Hodge and Prager's useful and interesting book is planned for stud
ents on an intermediate level. 

Hill's important book presents those aspects of plasticity which so 
far have been more or less "mathematicised"; by this word we mean 
that a rational theory which forms part of a larger scientific unit (the 
science of mechanics) is formulated in mathematical terms. This is 
true in particular for that part of plasticity theory which is known 
today as the theory of the "ideal" or "perfect" plastic body. Such a 
body is described mathematically by the system of equations a t the 
basis of the theory. We may, however, point out a few features: 
(a) The equations deal only with stresses and deformations at a fixed 
moment; after the whole configuration is determined for an instant 
the investigation may be repeated if necessary for the next moment; 
(b) thermal phenomena are disregarded; (c) work hardening and 
related phenomena are in general neglected, etc. 
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The characteristic features of an ideal plastic material, as con
trasted to an elastic one and described in the equations of plasticity, 
are very roughly the following: (1) While in an elastic material 
there is a one to one correspondence between strain and stress, a 
completely plastic material flows under constant stress (if only one 
stress component a matters, then, <r = a*; or, in general, a certain 
function of the stress tensor remains constant throughout the plastic 
flow). (2) A relation is assumed between stress tensor and (total) 
strain velocity tensor (rather than between stress tensor and (elastic) 
strain tensor). Mathematically, the whole setup consists of ten equa
tions (nine differential equations and one finite equation) for the 
following ten unknowns: six components of the symmetric stress 
tensor, 2 , three components of the flow velocity vector, v, and a non-
negative scalar function X(x, y, z). The equations are (a) three 
equilibrium equations for 2 , (b) the yield condition, a finite equa
tion which singles out the five-dimensional manifold of admissible 
stresses, (c) the six relations between stress and strain velocity; in 
the fully plastic state stresses are proportional to strain rates with 
the factor of proportionality X. This looks similar to the basic rela
tion of viscous fluid theory; the decisive difference is, however, that 
there the proportionality factor ju, the viscosity, is a material con
stant while our X is an unknown function of the space coordinates. 
Of these last six equations five only are independent since they are 
such that incompressibility holds, in the form div ü = 0; these equa
tions, generally called the Lévy-Mises or Saint Venant-Mises equa
tions, are strictly applicable only to a fictitious material in which 
elastic strains are zero. The strain equations of Prandtl (1924) and 
Reuss (1930) take into account not only plastic but also elastic 
strains. At any rate the complete general system of ten equations is 
too complicated for actual applications. 

The first three chapters of Hill's work form a preliminary unit, 
where the physical and mathematical foundations are explained (for 
the general three-dimensional case) and some general theorems, state
ments of uniqueness, some extremum principles, etc., are considered. 
A second group, in Chapters IV and V, concerns some plastic-elastic 
problems. As long as the loads acting on a metal are sufficiently small, 
the body is elastic; as the loads are increased plastic regions begin to 
appear which successively grow in size; the plastic zones are, how
ever, restrained from actual flowing ("contained plastic state") by 
the remaining still elastic material (think of the expansion of a 
cavity by internal pressure in a thick-walled shell). Finally the plastic 
regions may spread and merge to such an extent as to make actual 
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plastic flow possible; then the elastic deformation is negligible com
pared to the much larger plastic deformation, and the corresponding 
idealization is a rigid plastic type of material with the Lévy-Mises 
equations valid. In problems of contained plastic strain the material 
is plastic-elastic; the complete solution, based on the Prandtl-Reuss 
equations, involves a calculation of stress and deformation in the 
elastic as well as in the plastic region; the boundary between these 
regions is in general unknown (the same is true for the rigid plastic 
boundary in the other problems). So far only elastic-plastic problems 
of a simple type have been solved; it may, e.g., happen that all 
elements of the metal reach the yield limit simultaneously so that 
no plastic-elastic boundary need be found, as in the combined torsion 
and tension of a cylindrical bar; in other problems, like that of the 
torsion of a prismatic bar, elastic and plastic zones exist side by side 
but other simplifications prevail. Then follow the problems, exten
sively investigated by several authors, of the expansion of a spherical 
shell and of a cylindrical tube by internal pressure ; the presentation 
is based on the author's own work (with coauthors). 

The central part of the book, formed by Chapters VI - IX, deals, 
for plane motion, under conditions of "plane strain," with problems 
where a plastic rigid material may be assumed. Here we have a type 
of problem amenable to mathematical methods. For the fully plastic 
material there are now six equations and unknowns (or five after 
elimination of X); the unknowns are the three components <rz, <ryi 

T of 2 , the two components vx, vy of v and X; the equations are (a) 
two equilibrium conditions, (b) the yield condition in the form 
(o-a- — (Xy)2+4r2 = const., (c) three relations between the stress and 
strain rate tensors. Here, (a) and (b) are three equations for <xx, <ry, r 
alone, so that the five equations fall into two sets, as long as no 
boundary conditions are considered. The set (a), (b) is nonlinear but 
of the "reducible" type, i.e., after elimination of one stress-variable by 
means of (b) there remain two partial differential equations which, 
as in compressible fluid theory, can be transformed into two linear 
equations, for example by means of an exchange of dependent and 
independent variables. The theory of these stress equations has been 
extensively investigated. If the tensions are known, the last two equa
tions for the velocities are linear; it turns out that the characteristics 
of the "stress equations," and of the "velocity equations" are always 
real, coincide with each other, and bisect the angles of the principal 
stress directions (which are also the principal strain rate directions). 
The elegant theory of this "slip line field" is clearly and completely 
exposed in VI, including also some numerical methods based on the 
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finite difference equivalents of the basic equations referred to the 
slip lines. 

Chapters VII-IX deal with applications of the theory to actual 
problems. Unfortunately the "static determinacy" of the stress equa
tions is in general lost in actual problems, since the boundary condi
tions concern stresses and velocities. While one can always find partial 
solutions of the stress equations, without considering velocities, the 
correct stress solution of a specific problem can be found in this way 
only if there are sufficiently many pure s/rm-boundary-conditions. 
In this case, after the correct stresses have been found, we may solve 
the boundary problem of the second group, i.e., of the velocity equa
tions. If, however, the boundary conditions do not fall into two such 
groups, the whole problem must be dealt with more or less simul
taneously. In addition, the boundaries between rigid and plastic 
regions are not known beforehand so that we have certain conditions 
along free boundaries. Hence the solution will often be based on a 
method of systematic trial and error where we experiment with 
assumed plastic rigid boundaries, or with guessed solutions. In addi
tion to these essentially mathematical difficulties, a great difficulty in 
boundary problems of plasticity consists often in the definition and 
setting up of the problem, that is, in the determination of the right 
boundary conditions. In this difficult task one would much like to 
complement the mechanical knowledge and intuition by means of 
mathematical information, which, however, is often not available; 
we are thinking of general existence theorems as they exist in hydro
dynamics or elasticity theory, which would help to decide what 
groups of stress- and velocity-boundary conditions determine a 
solution. 

However, a considerable number of actual problems have been set 
up, solved, and discussed, particularly in recent years, and Hill has 
contributed much to this work. Chapter VII deals with so-called 
"steady state" problems, i.e., problems where stress- and velocity-
field do not vary in time. The history of the changes through which 
the steady plastic state is reached is not taken into account. The 
chapter contains much of the author's own work. It would lead too 
far to talk to mathematical readers about "sheet drawing," "sheet 
extrusion," etc. i\ftw-steady problems are those where stress—and 
velocity—field are varying in time; this variation may be such as to 
preserve geometric similarity ("quasisteady"), or no such restriction 
may hold. Again much of the author's work is incorporated ; problems 
of wedge indentation, of compression of a wedge, etc., belong to this 
class. If, however, a rectangular block of plastic rigid material is 
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compressed between rough rigid plates (shorter than the block), 
geometric similarity is not maintained. Finally, in Chapter IX, plane 
problems are discussed which require the consideration of an elastic-
plastic material. 

In Chapter XI , which deals with "miscellaneous topics," two 
further mathematically similar plane cases are discussed, "plane 
strain of a more general plastic material," and "plane stress." Both 
make it necessary to abandon the particular simple yield condition 
mentioned above, a fact that greatly complicates the mathematical 
situation. While the basic equations in V I - I X are everywhere hyper
bolic, with real orthogonal characteristics, the more general equations 
are in general partly hyperbolic, partly elliptic or parabolic (and no 
longer orthogonal); since the stress equations are not linear, the 
regions of this varying behaviour depend on the specific solution 
considered. Essential parts of the theory are given; some of the results 
seem to be true under more general conditions than those stated. 

Chapter X gives the basic equations and some applications for the 
case of axial symmetry. Here, just as in the plane problem, there are 
only two independent variables; there are, however, four nonvanish-
ing stress components, and the stress equations, as they are, are not 
statically determined. Chapter XI I offers an introduction to non-
isotropic problems. 

All through the book there are very complete bibliographical 
notes, in addition to an author index and a subject index at the end 
of the book. 

The reviewer admires Hill's accomplishment: in addition to re
porting so much published work, he has filled out many gaps by 
original remarks and contributions, thus achieving a unified presenta
tion. I t may, however, be said that, occasionally, when the reviewer 
sought instruction regarding a specific problem it was found very 
hard to follow the explanations. Returning, in such a case, to the 
original paper—by Hill—the desired information was readily ob
tained. Probably such things are unavoidable in a work so rich in 
content. By the way, the reviewer wonders why the useful tool of 
graphing a streamline pattern in order to impart in one view a picture 
of a velocity distribution is not used (in problems of plane strain a 
simple stream function, \f/(x, y), exists with d\f//dx=vy, drp/dy— —vx). 
There were instances when the reviewer could not approve of a 
mathematical presentation or of an argument. But a t any rate, even 
apart from the question of taste, such details are of minor interest, if, 
as in this book, the difficult task of expounding critically and in a 
unified way so much novel research work has been so successfully ac-
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complished. We join the author in his hope that his work "will at
tract engineers and applied mathematicians to a field which well 
rewards study and research." 

H. GEIRINGER 

Fourier transforms. By I. Sneddon. New York, McGraw-Hill, 1951. 
12+542 pp. $10.00. 

I t is the aim of the author to discuss various types of integral trans
forms from an elementary mathematical viewpoint and to demon
strate how they may be applied to various boundary value problems 
which arise in the physical and engineering sciences. Accordingly, 
some basic aspects of these transforms are discussed in the first three 
chapters of this text. Chapter one is concerned with the Fourier, 
Laplace, and Mellin transforms for one variable as well as the multiple 
Laplace and Fourier transforms. It is unfortunate that the complex 
form of the Fourier transform was not included here, for then one 
could see that there is no basic distinction between these transforms. 
Tha t is, what may then be accomplished by the unilateral transform 
of Fourier may be equally well accomplished by the unilateral La
place transform, etc. The second chapter contains a discussion of 
Hankel transforms (real case) as well as the relation between the real 
multiple Fourier transform and Hankel transforms. I t closes with a 
discussion of dual integral equations of a special class which has been 
discussed by Titchmarsh and his collaborators. The closing chapter 
of this part of the book is devoted to a discussion of the finite Fourier 
and Hankel transforms. These transforms are infinite series of the 
Fourier or Fourier-Bessel type which arise naturally in Sturm-
Liouville expansion theory. The application of these finite trans
formations to appropriate boundary value problems simply states 
that one is aware of the correct form of the expansion in advance. 

The remaining seven chapters are concerned with the applications 
of these mathematical methods to many ordinary and partial dif
ferential equations which arise in the physical and engineering sci
ences. No specialized knowledge of physics is assumed and the re
maining background is discussed with the view of supplying the neces
sary differential equations and their subsidiary conditions. We find, 
in the second portion of the book, applications drawn from vibration 
theory, elasticity, hydrodynamics, and heat conduction as well as 
some problems drawn from atomic and nuclear physics. 

The book closes with three appendices. The first one is concerned 
with some properties of Bessel functions, while the second one dis
cusses the method of steepest descent and some numerical methods. 


