
SOME NOTIONS AND PROBLEMS OF GAME THEORY 

J. C. C. MCKINSEY 

The theory of games is a relatively new branch of mathematics, 
which treats of situations involving conflict among rational agents. 
In a typical problem to which the theory is applicable, each of sev
eral people can to some extent, but only partially, influence the out
come of a certain event; no one of them by himself can determine the 
outcome completely; and they differ in their preferences among the 
various possible outcomes: the theory of games is then concerned 
with the problem of what each person should do in order to maximize 
his expectation of good. 

The theory was originally developed—first by von Neumann,1 and 
later by Morgenstern and von Neumann2—to provide a mathematical 
basis for economics. More recently it has been successfully applied 
to problems of military tactics.3 The mathematical statisticians,4 

finally, have found that some of the fundamental notions of this theory 
are extremely useful for their discipline: procedures analogous to 
those used in the theory of games, if they do not yet tell the statis
tician exactly what he ought to do, have at least taught him that 
certain things are better left undone. 

In this lecture I shall summarize the mathematical aspects of this 
theory. The literature of the subject is already too extensive for me 
to be able to cover it completely in the time at my disposal, but I hope 
to explain some of the important notions involved, and to indicate 
some of the outstanding problems. 

Before going to a general description of games it is well to explain 
some technical terminology. In the theory of games one means by a 
gatne, roughly speaking, a body of rules which specify unambigu
ously what, under various conditions, each of certain persons, called 
the players of the game, is permitted to do, what chance devices are 
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1 See von Neumann [19]. (The numbers in brackets refer to items in the bibliog
raphy.) 

2 See von Neumann and Morgenstern [20 ]. 
3 For a nontechnical account of the relation of the theory of games to military 

matters, see McDonald [15] and [ló]. For a detailed analysis of an interesting 
problem in this domain (the problem of how an airplane should cruise in searching for 
a submarine) see Morse [l7]. 

4 For the application of the theory of games to statistical problems, see Arrow, 
Blackwell, and Girshick [l] , and Wald [25] and [26]. 
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to be used, and the like. A play of a game, on the other hand, is a 
particular way of playing the game from beginning to end. Thus a 
chess tournament consists of a number of plays of the game of chess. 

What are called finite games can conveniently be represented with 
the help of topological trees.51 shall give an example of such a repre
sentation, for the case of a certain three-person game. Suppose that 
the first move of the game is made by player Pi, who has to choose 
from among four alternatives. We represent this situation by the 
bottom part of Figure I, where the "1" at the lowest point of the 
figure indicates that the first move is made by Pi, and the four rising 
lines indicate that Pi has four alternatives at this move. 

FIG. I 

We number the alternatives at this first move (and, indeed, at 
each of the moves) in a counterclockwise sense with roman numerals. 
Thus alternative I at the first move is the one corresponding to the 
segment leading to the vertex marked a2" in the figure. 

Now suppose that, if Pi chooses I on this first move, then the next 
move is to be made by player P2, who in turn has a choice from among 
three alternatives; and suppose that in addition it is given that if Pi 
chooses II or III on the first move, then the next move is made by 
player P3, who in either case is to choose from two alternatives. This 
is indicated in Figure I by putting a "2" at the end of the segment 
corresponding to the first choice by Pi, drawing three lines upward 
from this point, by putting a "3" on the vertices corresponding to 

6 An exact definition of a game was first given in von Neumann and Morgenstern 
[20, Chapter II]; but Kuhn, in [12], gave a much simpler definition. My discussion is 
based on that of Kuhn. 
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moves II and III of Pi , and drawing two lines upward from each of 
these points. 

Suppose, moreover, that, if P\ chooses IV on the first move, then 
the next move is made by chance—an "umpire,* let us say, chooses 
from two alternatives by means of some chance device—and suppose 
that the chance device is such that it assigns probability 1/4 to the 
first chance alternative, and 3/4 to the second. We represent this in 
Figure I by putting a "0" a t the vertex corresponding to the move 
made by chance; and putting "1/4" and "3/4" on the appropriate 
lines rising from this vertex. 

Finally, let us suppose that if P i chooses I and P2 chooses I I I , or 
if P i chooses II and P3 chooses I, then the next move is to be made 
by P i again ; that he then has a choice of two alternatives ; and that 
these are the only possible moves in the game. Then the tree in Fig
ure I represents the complete structure of the moves of the game. 

When games are represented in this way, we see that any unicursal 
path from the bottom to the top of the tree represents a play of the 
game; clearly there are just as many plays as there are top points of 
the tree. Thus there are precisely eleven possible ways of playing the 
game represented in Figure I. 

I t is apparent that, in order to describe the game, it is also neces
sary to state what will be the payments to or from the various players 
in case the game terminates a t the various points Ai, • • • , An. 
This can be done by giving a function H, which is defined over 
Aiy • • • , An, and assumes vectors (x, y, z) as values; where, for 
instance, if 

H(A*) - <5, 3, -8>, 

this means that , in case the play terminates at At, then P i and P2 
will be paid 5 and 3 respectively, and 8 will be taken away from P3. 

In order to complete the description of the game, however, it is 
also necessary to specify how much the players know about the 
previous choices a t the time they make their moves. (This specifica
tion is clearly very important, since the absence of information is, 
generally speaking, a handicap in playing a game.) Thus suppose, for 
instance, that when P 8 makes his choice he does not know whether 
P i has chosen II or III on his first move; we can indicate this, as in 
Figure I, by enclosing the two corresponding points in a region 
bounded by a dotted line. 

I t can even happen that Pi , on his second move, does not "remem
ber" what he did on his first move. Such a situation can be realized in 
practice by making P i consist of a "team" of two men, who are kept 
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isolated from each other, so that the second man, when it is his time 
to move, does not know what the first man has done. Such a situa
tion would be represented graphically by enclosing within a dotted 
line the two uppermost vertices of Figure I. 

We call such a set of vertices among which a player cannot dis
tinguish when he makes his move an information set. The totality of 
information sets constitutes a partition of the moves of the game 
(i.e., of the vertices of the tree) ; if a player at a certain point is com
pletely informed about the past course of the play, the corresponding 
information set contains only the single point—in which case we 
usually omit the dotted line. 

If each information set contains just one vertex, we say that the 
game is one with perfect information. Thus a game with perfect in
formation is one in which each player, a t the time when he makes 
each of his moves, is completely informed about the past course of 
the play. 

In general, an n-person finite game is one that can be represented 
as above by a finite tree. The partition of the vertices into information 
sets is subject to the obvious restrictions that all the vertices in a 
given information set must correspond to the same player, and must 
present the same number of alternatives. In addition it is convenient 
to impose the following condition: 

CONDITION A. No information set intersects any play in more than 
one point. 

If Condition A is not satisfied, certain difficulties arise, which will 
be discussed later. 

An enormous simplification of the theory of finite games was 
effected by von Neumann's introduction of the notion of a strategy. 
By a strategy for a player is meant a function which is defined over 
the class of his information sets, and for each information set picks 
out one of the available alternatives. Thus, for the game represented 
in Figure I, let a be the set consisting of the bottom vertex, and let 
/? be the set consisting of the two top vertices; then a strategy for 
player P i is a function ƒ such that 

f (a) e {i, ii, m, iv} 
and 

/ ( 0 ) £ { I , I I } . 

Thus P i has eight strategies for this game. The number of strategies 
for a finite game is of course always finite. 

Now imagine that , before starting a play of a game, each player 
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picks a strategy and plays according to it. Then, if there are no 
chance moves involved in the game, the outcome, including what 
payments will be made, is already determined; thus the players 
might as well pick their strategies, and then leave to a computing 
machine the task of calculating the outcome. On the other hand, if 
the game involves also chance moves, then a choice of strategies by 
the players does not completely determine the outcome, but it at 
least determines the expectation of each player; here again, then, after 
picking their strategies the players can leave the actual play to a 
machine—though now we shall have to suppose that the machine is 
provided with suitable chance mechanisms (or with tables of random 
numbers) which it will employ at appropriate points in the play. 

In terms of this notion of strategies, we can now describe, cor
responding to a given finite game, an equivalent game of much 
simpler character. For each player Pi (i = l, • • • , n), let the set of 
strategies available to Pi be a*-. Let Mi, • • • , Mn be functions such 
that, when player Pi chooses strategy xi, player P2 chooses strategy 
X2, and so on, then the amount 

Mi(xU • • • , Xn) 

is the expectation of the ith player. Then the given game is equivalent 
to the following w-move game: on the first move Pi chooses an element 
Xi from ai; on the second move P2, without being informed what 
choice Pi has made, chooses an element x% from a2; • • • ; and on the 
last move, Pw, without being informed what choices have been 
made by the other n — 1 players, chooses an element xn from an. 
After all the choices have been made, player Pi (for i = l, • • • , n) 
is paid the amount 

Mi(xlf • • • , xn). 

This new form of the game is called the normalized form; the form 
considered earlier (where there can be many moves, chance moves, 
etc.) is called the extensive form. The functions Mi, • • • , Mn are 
called the payoff functions of the game in normalized form. 

A game in normalized form, with payoff functions Mi, • • • , Mn, 
is called zero-sum if for every choice # ! , • • • , # » of strategies for the 
n players we have 

n 

YJ Mi(xi, • • • , xn) = 0. 

Thus a zero-sum game is one where the sum of the payments made, 
at least on the average, is zero. 
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I t is clear that the normalized form of a game is zero-sum if the 
sum of the payments to the various players is zero for each possible 
outcome. This condition is not necessary, however, if the game in 
extensive form involves chance moves, since the payoff functions 
are defined as expectations. 

All the familiar parlor games are zero-sum, since wealth is neither 
created nor destroyed in the course of playing them—but is merely 
transferred from one player to another. But this is not to say that 
only zero-sum games are important. For it appears that economic 
processes, when considered as games, are ordinarily not zero-sum, 
since wealth is sometimes created during these processes; and in 
military processes wealth is often destroyed.6 

Although the theory of non-zero-sum games is extremely im
portant in practical applications, it appears very difficult to formulate 
useful concepts for this theory; and the situation is similar with re
spect to games with more than two players. The conceptual part of 
the theory of zero-sum, two-person games, on the other hand, is al
ready in a very satisfactory state; and this theory presents a great 
variety of exactly formulated mathematical problems, some of which 
turn out to be quite difficult. During the last few years the attention 
of mathematicians interested in game theory has accordingly been 
largely devoted to problems about zero-sum two-person games; I 
want to review very briefly some of the known results in this domain. 

Let T be a (finite) zero-sum two-person game in normalized form. 
We can suppose that the strategies of P i are represented by the num
bers 

1, • • • , w, 

and those of P 2 by 

1, • • • , n. 

Moreover, there are two functions M and M' such that, if P i chooses 
strategy i and P 2 chooses strategy j , then P i receives 

M(i,j) 

and P 2 receives 

M'(iJ). 
6 It should be remarked that in military situations it often becomes exceedingly 

difficult to state what sort of assumptions should be made about the utility of the 
objects created or destroyed—and one is puzzled how to compare the utility scales 
of the contestants. Thus in such situations it is not always easy to say whether we are 
dealing with a zero-sum game or not. 



195*] SOME NOTIONS AND PROBLEMS OF GAME THEORY 597 

Since T is zero-sum we have, for all i^m andj^w, 

M(i,j) + M'(i,j) = 0, 

and hence 

M'(iJ) = -M(i,j). 

Thus we can say simply that Pi receives M(i, j) and P2 receives 
— M(i, j). Hence the game is determined by the "payoff matrix'' 

f Jf(l, 1) • • • Jf(l, n) 1 

{M(m, 1) • • • Af(w, n)) 

if Pi chooses the ith row and P2 chooses the jth column, then P2 is 
to pay Pi the amount M(i, j). 

Now for any element i which Pi may choose, he can be sure of 
getting at least 

min M(i,j). 

Since Pi is at liberty to choose i, therefore, he can make his choice in 
such a way as to insure that he gets at least 

max min M(i,j). 

Similarly, P2 can make his choice in such a way that P2 is sure to get 
at least 

max min —M(i,j), 
j<,n i<ttn 

and hence so that Pi will get at most 

— max min —M(i,j), 

which equals 

min max M (i, j). 

If it happens that 

(1) min max M(i, j) = max min M(i,j), 

then Pi can himself play so as to get this common value (which we 
denote by V ) , and P2 can keep Pi from getting more than v. In 
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this case, there are optimum strategies H and jo for the two players 
such that, for all i and j , 

(2) M(i9 jo) S M (to, jo) â M(i0, j) 

and 

M(io, io) = ». 

Thus Pi, unless he has good reason to believe that P2 will behave in 
some particular foolish way, cannot do better than to choose io) and 
similarly, P2 cannot do better than to choose jo» 

It is easily shown that conditions (1) and (2) are equivalent: 
thus condition (1) is satisfied if and only if the matrix of the game 
has a saddle-point—i.e., an element which is at the same time the 
minimum of its row and the maximum of its column. The matrix 

for example, has a saddle-point in its upper left-hand corner; hence 
Pi can expect to get at least 2 in this game (by choosing the first row), 
and P2 can keep Pi from exceeding 2 (by choosing the first column). 

It is interesting to note in this connection that Morgenstern and 
von Neumann have shown (in [20, pp. 112-124]) that the matrix of 
the normalized form of every two-person, zero-sum game with com
plete information has a saddle-point. Thus there exist optimum 
strategies for playing chess, for example, or backgammon. The 
theorem does not apply to games like bridge or poker, however, 
where one does not know what cards have been dealt one's opponents. 

On the other hand, not every matrix has a saddle-point; a simple 
example is the following: 

(-1 "0-
The question then arises whether there are nevertheless optimum 
ways of playing such games. The answer is affirmative, provided we 
introduce a new notion: namely, that of using a chance mechanism 
for the choice of strategies. 

Suppose that, in the game whose matrix is 

(M(l, 1) . . . Jf(l, »)] 

\ t 

[M(mt 1) • • • M(m, n)) 
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the first player, instead of choosing the m strategies available to him 
in some predetermined manner, selects them at random with prob
abilities x\9 • • • , xmi and that the second player selects his strategies 
with probabilities yi, • • • , yn. This means that Pi chooses a vector 
X=*(xi, • • • , Xm) from the set S m of all vectors (zi, • • • , 2m) whose 
components satisfy 

m 

Zi g£ 0for i — 1, • • • , m, 2 ^ = 1 ; 
t - i 

and similarly that P2 chooses a vector F=(yi, •• • • , yn) from the 
analogously defined set S*. (Elements of S w and S» are called 
mixed strategies] we sometimes call the original strategies 1, • • • , m 
and 1, • • • , n pure strategies.) Then the expectation E(X, Y) of the 
first player is given by the equation 

E{X,Y)^td^M{iJ)xiyi. 
7=1 »=i 

Reasoning as we did in the case of pure strategies, we see that, by 
playing properly, Pi can insure that his expectation will be at least 

max min E(X, F); 

and the second player can insure that the expectation of the first will 
be at most 

min max E(X, 7). 
m 

At this point, however, the situation diverges radically from the case 
of pure strategies, for now it can be shown that, for every payoff 
matrix Af, we have 

max min E(Xt Y) = min max E(X, Y). 
xeSm reSn reSn xeSm 

Thus if we permit the players to use mixed strategies, then every 
finite zero-sum, two-person game has optimum strategies for the two 
players. This theorem, which was first proved by von Neumann,7 is 
sometimes called the "minimax theorem"; it is the fundamental 
theorem of finite games. 

7 The earliest proof of this theorem is to be found in von Neumann [19] ; this proof 
makes use of the Brouwer fixed-point theorem. An elementary algebraic proof was 
given later in Ville [24]. In von Neumann and Morgenstern [20, pp. 153-158], will 
be found a simple proof depending on the theory of convex sets. Other proofs are to 
be found in Loomis [14] and Brown and von Neumann [ö]. 
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Thus if we let Di and D2 be the sets of optimum mixed strategies 
for Pi and P2 respectively, we see that Vi and D2 are not empty. 
Since DiCg m and D 2^S n, it is clear that £>i and D2 are respectively 
subsets of (tn — 1) -dimensional and (n — 1) -dimensional Euclidean 
space. It is easily verified that D% and £)2 are closed and convex; and 
a proof that £>i and €>2 are polyhedral has been given by Shapley 
and Snow (in [22]), who have also established a constructive method 
for finding the vertices of the polyhedra; from the convexity this of 
course enables one to find all the members of Di and D2. It should be 
remarked, however, that the method of Shapley and Snow becomes 
laborious in the case of games with matrices of large order, since the 
method involves inverting a substantial proportion of the submatrices 
of the matrix of the game. 

A more rapid (iterative) procedure for computing a pair of optimum 
strategies for a given game has been developed by Brown (see [5]), 
and shown to be convergent by Julia Robinson.8 

Mathematicians have also interested themselves in the problem of 
what sets Di and D2 can be regarded as the sets of optimum strategies 
for the two players of some zero-sum, two-person game. This problem 
has an elegant solution, which has been found by Bohnenblust, 
Karlin, and Shapley (in [3]), and independently by Gale and Sher
man (in [8]). 

Although the theory of finite zero-sum two-person games might 
thus seem to be already in a satisfactory form, it should be noticed 
that neither of the above methods of finding optimum mixed strate
gies is practicable when the number of pure strategies is more than, 
say, 100. On the other hand, when we normalize almost any game 
given in extensive form, the number of pure strategies is found to be 
quite large. Thus, even for the very simple game of ticktacktoe, 
there are more than lo10*000 pure strategies for each player; and clearly 
the number of pure strategies increases at a tremendous rate with 
the number of moves in the game. Two partial solutions have been 
given for the difficulties that arise from this circumstance. 

The first partial solution rests on the fact that certain information 
in a game may be in a sense superfluous. Thus suppose, for example, 
that the first two moves of a certain game are both made by Pi, and 
that Pi, when he makes his second move, is informed what he did on 
his first move; then we see that this information is actually of no 
help to Pi, since his knowing what strategy he is playing insures 
that he knows what he did on his first move; thus we can obtain an 
equivalent game by decreasing the information given Pi in his second 

8 See Robinson [21 ] . 
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move, which will decrease the number of information sets for Pi, 
and hence the number of strategies available to him. A simple method 
of deciding what information sets can safely be coalesced has been 
given by Krentel, McKinsey, and Quine (in [ l l ] ) ; this method, 
however, applies only to a certain subclass of the totality of finite 
games. An interesting condition applying to all finite games has 
recently been found by Norman Dalkey;9 in this general case, how
ever, there may be more than one game which is equivalent to a given 
game, and which is "completely deflated" (i.e., in which no more in
formation sets can be coalesced without losing equivalence) ; and the 
problem remains to pick out, from among the completely deflated 
games equivalent to a given game, one which will make the number of 
pure strategies as small as possible. 

The second partial solution, which goes in a different direction alto
gether, was first made use of by Morgenstern and von Neumann (see 
[20, pp. 186-218]) in a discussion of a certain form of poker, and 
was later treated in a general way by Kuhn in [12]. In order to ex
plain this method, it is necessary to introduce two new notions about 
games. By a game with perfect recall we mean a game in which each 
player, at each of his moves, remembers everything he did and knew 
at his previous moves; thus every two-person game which can be 
played by just two people (rather than by teams) is a game with per
fect recall; rummy, for instance, is a game with perfect recall, but 
bridge is not—since in bridge each player is a pair of people, neither 
of whom is informed what cards the other holds. (I have given here 
only an intuitive explanation of this notion; it can easily be made 
mathematically precise, however, by expressing a condition on the 
information partition for the given game.) By a behavior strategy for 
a player of a game is meant a set of probability distributions, one 
for each of the player's information sets; and such that, if a is an 
information set which presents r alternatives, then the probability 
distribution corresponding to a is a member of Sr. It is clear that, 
instead of using mixed strategies in playing a given game, one can 
also use behavior strategies; it is intuitively evident, moreover, that 
one can always do at least as well with a mixed strategy as with a 
behavior strategy. Now Kuhn10 has shown, conversely, that, in the 
case of a game with perfect recall, one can always do as well with a 

9 This result is to appear in the forthcoming second volume of Contributions to the 
theory of games (Annals of Mathematics Studies, No. 28), which will be published by 
the Princeton University Press. 

10 See Kuhn [l2]. Actually Kuhn established a considerably stronger result than 
the one stated above. 
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behavior strategy as with a mixed strategy. This fact greatly de
creases the difficulty of calculating optimum ways of playing games 
with perfect recall, for in general the number of parameters to be 
determined in calculating optimum behavior strategies is much 
smaller than the number of parameters to be determined in calculat
ing optimum mixed strategies. 

It should be remarked that the above two methods cannot very 
well be used in combination. For the first method, which coalesces 
some of the information sets of a player, leads from games with per
fect recall to games without perfect recall. Thus the question arises 
concerning when it is better to use one method, and when the other. 
In general, it appears that some more attention could profitably be 
devoted to the problem of how to solve games given in extensive 
form. 

I turn now to games which are not finite: for example, to games in 
which choices are to be made from an infinite, instead of from a 
finite, number of alternatives. A great part of the research in this 
direction has been devoted to games which are already in normalized 
form. Thus suppose that Pi chooses a real number x from the closed 
unit interval (0 ̂ x ^ 1), that P2, without being informed what choice 
Pi has made, then chooses a number y from the closed unit interval, 
and that P2 then pays Pi an amount M(x, y), where M is a function 
of two real variables defined over the closed unit square* Such games 
are called continuous games. By a mixed strategy for such a game is 
meant a cumulative distribution function over the unit interval. 
If Pi chooses x by means of a cumulative distribution function/, and 
P2 chooses y by means of a cumulative distribution function g, then 
the expectation £(ƒ, g) of Pi is given by the formula 

£(ƒ.«)= f f M(x, y)df(x)dg(y). 
J 0 J 0 

It has been shown by Ville (in [24]) that if M is continuous, then 

max min £(ƒ, g) = min max £(ƒ, g), 
f 9 o s 

so that a continuous game with a continuous payoff function has 
optimum mixed strategies for the two players. This result has been 
strengthened and generalized by Wald (in [25]), and by Karlin (in 
[10]). 

As might be expected, mathematicians have devoted considerable 
attention to the problem of finding optimum mixed strategies for 
particular continuous games. Interesting results of this sort have 
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been obtained in two rather wide special cases: (1) the case where 
Mix, y) is convex in y for each x (and the analogous case where 
M(x, y) is concave in x for each y) ; and (2) the case where M(x, y) is 
a polynomial. In the first case, it has been shown by Bohnenblust, 
Karlin, and Shapley (in [4]) that if M(x, y) is strictly convex in y for 
each x, and is differentiable over the closed unit square, then there is 
a unique optimum strategy for P2, which assigns probability 1 to 
one point, and hence probability 0 to all other points (thus what 
is called a step-function with one step) and there is a step-function 
with two steps which is an optimum strategy for P\. In the second case 
also, which has been treated by Dresher, Karlin, and Shapley (in 
[7]), it has been shown that each player always has an optimum 
strategy which is a step-function (the number of steps depending on 
the degree of M) ; and constructive methods have been developed for 
finding the appropriate step-functions. The methods of Dresher, 
Karlin, and Shapley are also applicable to many games with payoff 
functions of the type called polynomial-like: i.e., which can be 
represented in the form 

n m 

M(xt 3>) = 2 E aari(%)si(y) 

where ru • • • , rm and si, • • • 1 sn are continuous. 
There are also many interesting rather special results known in this 

connection. Gross11 has given an example of a continuous game with 
a rational payoff function which has no step-function as an optimum 
strategy. Blackwell and Girshick have given an example12 of a con
tinuous game where every pure strategy is employed in the unique 
optimum strategy. Bellman and Blackwell (in [2]) have given an 
interesting analysis of the role of bluffing in two-person poker. 

It goes without saying that there remain a great variety of un
solved problems in this domain. Formulations of some of these will 
be found in Kuhn and Tucker's introduction to a recent collection of 
papers on games (see [13]). 

A problem which appears to be particularly important, but un
fortunately very difficult, is that of dealing in some way with games 
which have more than one move, and where the choices are made from 
infinite sets. Thus suppose, for instance, that a game has four moves: 
in the first move Pi chooses a number Xi from the unit interval; in 
the second move, P2, knowing xi9 chooses a number yi from the unit 

11 See Gross [9]. This proof makes use of the fact, established in Tarski [23], 
that only algebraic numbers are definable in elementary algebra. 

12 In a private communication. 
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interval; in the third move, Pi, knowing yi, but having forgotten 
xu chooses a number x2 from the unit interval; and in the fourth 
move P2, knowing yi and #2, but not Xi, chooses a number 3/2 from the 
unit interval. (The payoff is then some function of the four variables 
#i> #2, yi, y2.) A pure strategy for Pi is now an ordered couple (a, ƒ), 
where a is a real number and ƒ is a function of one variable (it de
pends on 3/1) ; and a pure strategy for P2 is an ordered couple (g, h), 
where g is a function of one variable (it depends on Xi) and h is a 
function of two variables (it depends on y\ and #2). Thus in this game 
a mixed strategy is a distribution function over function space. 
It is not clear even over which subsets of this function space the prob
ability distributions are to be regarded as being defined; and cer
tainly we do not know conditions under which optimum strategies 
for such a game exist, or how to find them when they do. 

FIG II 

Another important problem, to which attention has been called 
by Helmer,12 is the problem of finding some rational way of dealing 
with conflict situations which are not technically two-person zero-
sum games, though they closely resemble such games. I shall begin 
with a detailed examination of a situation which violates Condition A 
above. Just in order to have a term, let us agree to mean by a 
"pseudo-game" something that is like a game, except that Condition 
A is not satisfied. A very simple pseudo-game is one whose graphical 
representation is given in Figure II. Here we can suppose, if we please, 
that there are two players, Pi and P2; but all the moves are made by 
Pi. On the first move, Pi is to choose from two alternatives, and on 
the second move he is again to choose from two alternatives. The 
dotted line enclosing the three vertices indicates the sole information 
set of the game; thus Pi, when he moves, does not know whether he 
is moving for the first or the second time. Since plays intersect the 
information set in two points, Condition A is not satisfied, and hence 
this is only a pseudo-game. 

It is apparent that, in order to realize this situation in practice, it 
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would be necessary to make Pi a team consisting of two human be
ings. For if Pi consisted of a single human being, then, on the second 
move, Pi would remember that he had already moved, so that his 
information would be better than that indicated by the diagram. 

Hence, suppose that there are two men, P?} and Pf\ who are to
gether to constitute Pi, and suppose they are put into separate rooms 
and not allowed to communicate with each other during the play. 
After the beginning of the play, the umpire is to go into one room, 
and ask the man there to choose one of the alternatives I and II, 
and then into the other room, and ask the other man to choose one 
of the alternatives I and II. P2 will then pay Pi an amount M(x, y), 
where x is the alternative chosen by the man in the first room, and y 
is the alternative chosen by the man in the second room. 

If we were to define a strategy for a pseudo-game in the same way 
we defined it for a game, then there would be only two strategies for 
Pi in this game: one strategy would make him always pick I, and 
the other would make him always pick IL The first strategy would 
make him always end up at Ai, and the second would make him 
always end up at A4. Any mixed strategy, consequently, would 
make him end up sometimes at -4i and sometimes at A 4—but never 
at A2 or A3. Since it can happen, however, that the payoffs to Pi at 
A 2 and A 3 are both higher than at A1 or A 4, it is seen that in some 
cases Pi can do better than by playing any mixed strategy: for ex
ample P[1} and P£2) could agree that Pf is to choose I, and P?* is to 
choose II—in which case the play would terminate either at A % or -4 s. 

Thus it might be thought that for this game we should distinguish 
four strategies: 

1. P^andP^bo thp ick l ; 
2. P?> and Pf both pick II; 
3. Pf picks I, and Pf picks II; 
4. Pf picks II, and Pf picks I. 

But now the difficulty arises that, if Pi plays strategy 3 or 4, then it 
is impossible to tell whether the play will terminate at -42 or at A3; 
for this will depend on whether the umpire goes first into the room 
occupied by P?} or first into the room occupied by P®\ Since the 
payoffs at -42 and -4s are not necessarily equal, however, and since 
we do not know even the probability that the umpire will go first 
into the room occupied by Pf, we cannot in general calculate the 
expectation of Pi if strategy 3, or strategy 4, is used. Thus our theory 
of games cannot be carried over in any obvious way to pseudo-
games. 

It is in order to avoid difficulties of this sort that we require 
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that games satisfy Condition A. By imposing this condition we reduce 
the theory of games to something manageable; but the difficulties 
have not been legislated out of existence: they continue to exist, even 
if no longer countenanced as part of the theory of games. For conflict 
situations describable only as pseudo-games do arise in practice, and 
we sometimes have to cope with them—regardless of what we choose 
to call them. Suppose, for example, that two policemen, A and Bt are 
trying to shoot an escaped insane criminal, C. Here it is natural to 
regard A and B as one "player," and C as the other "player." A and 
B may find it advantageous to separate; and after they have done so, 
A, when he sees C and shoots a t him, may very well not know 
whether B has previously shot. I t does not seem unreasonable to 
inquire what sort of actions A and B should take, even though this is 
not technically a game. This class of problems seems to be equivalent 
to the problem of defining optimum strategies for games in normalized 
form, where the values of the elements of the payoff matrix are not 
known exactly, but are merely required to satisfy certain inequalities. 

I t can also happen that, due for instance to difficulties of com
munication, it is not possible for the various members of a team to 
agree upon a strategy before the beginning of a play—in which case 
again, the theory of games in normalized form is no longer applicable. 
Situations of this sort are especially apt to occur in connection with 
military affairs. 

In concluding this survey, I turn to a consideration of the prob
lems which arise in connection with what are called "general" games: 
i.e., games which are not necessarily zero-sum, and which may have 
more than two players. As has been mentioned earlier, such games 
are particularly important so far as regards practical applications, 
but they present great conceptual difficulties; in particular, game 
theorists have not been able even to come to any general agreement 
as to what should be meant by a solution of such a game. 

I shall discuss briefly the two most ambitious attempts13 that have 
been made to deal with this subject: that of von Neumann, and that 
of Nash. I shall not try to give anything like a complete and adequate 
account of the theories in question, however, but shall merely say 
enough to give an intuitive idea of them. 

von Neumann's treatment14 of general games is based on the notion 

13 More recently a very interesting partial theory of zero-sum «-person games has 
been developed by L. S. Shapley. This theory was outlined by Shapley at the Septem
ber 4, 1951 meeting of the Econometric Society at Minneapolis. A brief account will 
be found in Econometrica vol. 20 (1952) p. 91. 

14 Roughly the last two-thirds of von Neumann and Morgenstern [20] is devoted 
to an exposition of this theory of general games. 
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of a characteristic function for such a game, which is introduced as 
follows. If N is the set of all players of a game, and if 5 is any subset 
of N, then it can happen that the players form themselves into two 
"coalitions," S and N—5, which cooperate among themselves and 
oppose each other. If this happens, then the game becomes essen
tially a two-person game, and we can define a function v by agreeing 
that if S is any subset of N, then v(S) is the total amount the mem
bers of S could expect to obtain, if they all cooperated together, and 
all the other players formed themselves into an opposing coalition, 
and tried to hurt the members of S as much as possible. 

By a solution of a general w-person game, von Neumann means a 
certain set of ordered w-tuples of real numbers. I am not going to 
repeat here the exact conditions which must be satisfied by such a 
class of w-tuples, except to remark that the conditions are expressed 
solely in terms of the characteristic function ; so that two games whose 
characteristic functions coincide will have the same solutions. The 
intuitive meaning of a solution is roughly the following: it represents 
the set of all possible ways, for a given organization of society, in 
which money can be distributed among the players at the end of a 
play. 

Now consider a two-person non-zero-sum game in normalized form, 
where Pi has just one strategy (so the outcome of a play cannot be 
affected by Pi), and P2 has two strategies; and suppose that, in case 
P2 uses his first strategy, then the payoff to Pi is 10, and to P2 is 0; 
and in case P2 uses his second strategy, the payoff to Pi is 0 and to 
P2 is —1,000. It is convenient to represent such games by a pair of 
payoff matrices: 

Payoff to Pi Payoff to P2 

(10 0) (0 -1,000). 

Thus we again think of Pi as being able to choose a row (but there 
in only one row in this case, so he has no real choice), and of P2 as 
being able to choose a column. 

The characteristic function of this game is a function defined over 
the four subsets of the set of two players. Since neither Pi nor P2 

can, through his own endeavors, make sure of getting more than 0, 
we see that 

(3) »({*}) - »({P*}) - 0-
Moreover, Pi and P2 can together behave in such a way that the sum 
of the payments to them will be 10 (in order to achieve this end, 
it is only necessary that P2 choose the first column) ; hence 
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(4) * ( { P i , P , } ) - 10. 

Finally, as in any game, if A is the empty set, we have 

(5) v(A) = 0. 

Equations (3), (4), and (5) completely specify the characteristic 
function. 

For this game it turns out that there is just one solution in the 
sense of von Neumann, and this solution is the set of all couples 
(xi, x2) of non-negative real numbers such that #i+x2 = 10. This may 
be interpreted in the following way: before playing this game the 
two players will (or perhaps merely "should") get together and agree 
that P2 will choose the first column, so that Pi will be paid 10 and 
P2 will be paid 0; they will decide, moreover, how this 10 is to be di
vided between them into Xi and #2; this division can be arbitrary, 
subject only to the restriction that Xi and x% are both to be non-
negative and are to have a sum of 10. 

Two objections have been urged against von Neumann's notion of 
a solution. In the first place, it is felt by some people that knowing 
the solution in this sense of the word would not be much help in 
playing the game. The solution leaves a wide range of indeterminancy, 
and tells us nothing about the way in which the agreement between 
Pi and P2 is finally to be reached. 

Secondly, it seems doubtful that the characteristic function ade
quately represents all the complications of the game. Thus, for ex
ample, one has the intuitive feeling that, in the game described above, 
Pi is in a better bargaining position than is P2, and most people feel 
they would rather play the part of Pi than that of P2: for Pi will 
automatically be paid 10, unless P2 is willing to injure himself very 
greatly by choosing the second column, and hence himself losing 
1,000; therefore it hardly seems likely that P2 will be able to persuade 
Pi to pay him part of the 10, in order to insure that P2 will play the 
first column. On the other hand, the characteristic function of this 
game, from (3), is symmetric in Pi and P2; so that no asymmetry 
can appear in any notion of a solution, so long as the solution is 
defined solely in terms of the characteristic function. 

An attempt to avoid these difficulties, and to devise an altogether 
new way of dealing with general games, has been made by Nash 
(in [18]). Nash distinguishes first between what he calls "nonco-
operative" and "cooperative" games. A noncooperative game is one 
in which no communication is allowed between the players, and in 
which, in particular, they are not allowed to make agreements about 
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side-payments ; a cooperative game is one in which communication is 
allowed. 

For the noncooperative game, Nash introduces the notion of an 
equilibrium point, which is a generalization of the notion of a saddle-
point for a two-person zero-sum game. An equilibrium point for an 
n-person game is an ordered w-tuple (xi9 • • • , xn) of strategies such 
that , for i = l, • • • , » , if every player P,, ior J9*i, chooses xy, then 
Pi cannot do better than to choose x*. Nash shows that every finite 
game has an equilibrium point (in mixed strategies). He also points 
out that social groups who repeatedly play a certain game often fall 
into the habit of playing an equilibrium point; in such cases, of 
course, a newcomer to the group (unless he is able to persuade others 
to deviate) cannot do better than to stay with the equilibrium point 
also, and in general he will lose if he deviates from it. 

Nash calls an w-person game solvable in case the set, 5, of all 
its equilibrium points satisfies the following condition: if l^i^nf 

and if (xu • • • , xn)GS and (yu • • • , yn)ES, then (xh • • • , x^1} 

yit Xi+iy • • • , xn)CzS. If a game is solvable in this sense, the set of 
its equilibrium points is called its solution. He deals with the co
operative games, in turn, by reducing them to noncooperative games 
in the following way: the negotiations of the cooperative game are in
cluded as formal moves in a noncooperative game (these moves con
sist of such procedures as, for example, one player's making an offer 
of a side-payment to another). 

I t must be remarked that Nash's theory—though it represents a 
considerable advance—has some grave deficiencies and certainly can
not be regarded as a definitive solution of the conceptual problems of 
this domain. In the first place, so far as regards the noncooperative 
games, it is unfortunately not the case that every game is solvable 
in the sense of Nash. Thus consider the two-person game whose 
matrices are as follows: 

Payoff to Pi Payoff to P2 

/10 - 3 0 \ / - 2 0 - 3 0 \ 

\ 8 - 1 8 / \ 6 12/ 

Here there is an equilibrium point in the upper left-hand corner, and 
one in the lower right-hand corner; but the other two points in the 
matrices are not equilibrium points, and hence the game is not solv
able. P i would of course prefer the equilibrium point in the upper 
left-hand corner, and P 2 would prefer the equilibrium point in the 
lower right-hand corner. The theory of Nash seems to throw little 
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light on the question how to play a game having such a pair of 
payoff matrices. 

In the second place, even if the theory of noncooperative games 
were in a completely satisfactory state, there appear to be difficulties 
in connection with the reduction of cooperative games to nonco
operative games. It is extremely difficult in practice to introduce 
into the noncooperative games the moves corresponding to negotia
tions, in a way which will reflect all the infinite variety permissible 
in the cooperative game, and this without giving one player an arti
ficial advantage (due to his having the first chance of making an 
offer, let us say). 

Thus it seems that, despite the great ingenuity that has been 
shown in the various attacks on the problem of general games, we 
have not yet arrived at a satisfactory definition of a solution of 
such games. It is rather likely, as has been suggested by Bellman,12 

that it will be found necessary to distinguish many types of games, 
and define "solution" differently for different types; the theory of 
Nash of course represents a step in this direction. This whole aspect 
of the theory of games presents a challenging problem to the mathe
matician, and in my opinion an extremely important one—since the 
application of game theory to a very wide class of practical situations 
must wait for such a definition. 
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