
ON SMOOTHING OPERATIONS AND THEIR 
GENERATING FUNCTIONS1 

I. J . SCHOENBERG 

INTRODUCTION 

In this paper we are mainly concerned with two kinds of linear 
transformations, the sequence convolution transformation 

00 

( 1 ) Jn = X ) an-vXv 

and the integral convolution transformation 

ƒ 00 

A(x - t)f(t)dt, 
- 0 0 

where the sequence {an} and the function A(x) are thought of as 
given. In §2 we also consider the ordinary linear transformation 

n 

(3) yt = J2 aik%k (i = 1, • • • , m). 
k=l 

The loosely connected topics to be discussed concerning these trans
formations are perhaps best brought together under the general sub
ject of smoothing operations. 

In §1 we are concerned with transformations (1) of the kind used for 
the purpose of smoothing numerical data. Erastus L. De Forest pro
posed long ago the problem of describing the asymptotic behavior of 
the coefficients of high-order iterates of (1) (see Wolf enden [15]). 
This question, as well as the question of when a formula (1) may 
rightly be called a smoothing formula, was answered by the author 
in [38] and [31 ]. It is shown in §1 that the author's criterion for a 
smoothing formula is essentially of the nature of a stability condition 
of the kind required of difference methods for the numerical integra
tion of partial differential equations. From this point of view De 
Forest's problem amounts to constructing by difference methods the 
fundamental solutions of certain parabolic differential equations. 
These remarks are merely special cases of Fritz John's recent work 
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200 I. J. SCHOENBERG [May 

[49] on the integration of parabolic differential equations. 
The remainder of the paper discusses those transformations (1) and 

(2) which are variation-diminishing. These special classes of smooth
ing operations, while perhaps too narrow for practical smoothing 
purposes (because, in actuarial terms, they preserve only linear func
tions) , seem to deserve particular attention because of the interesting 
problems which arise if we at tempt to characterize their respective 
generating functions 

00 /» 00 

X) anz
n and I e~xsA(x)dx. 

- 0 0 J - 0 0 

§§3 and 4 are devoted to these problems concerning (2) and (1), 
respectively. A discussion of (2), initiated by Pólya in 1915, has 
recently received considerable attention by Widder, Hirschman, 
and the author. The transformation (1), studied by M. Aissen, Anne 
Whitney and the author, is the subject of very significant as yet un
published contributions at the hands of Albert Edrei (§4). Edrei's 
results are used to establish (Article 4.3) a conjecture of Schoenberg 
[31, Part B, pp. 131-132]. 

Our discussion in §2 of the transformation (3) is mainly intended 
to provide a background for the transcendental cases of (1) and (2). 
Attention is called to a recent theorem of R. Gantmakher and M. 
Krein which is of interest in the present connection and is also help
ful in a discussion of curves which are convex in higher-dimensional 
spaces.2 

1. T H E STABILITY OF SMOOTHING FORMULAE 

1.1. What is a smoothing formula? Let 
00 

(1.1) J m = ] C <*nir-pXp 
P=z—0Q 

be a given "moving average" formula which is such that the function 

(1.2) F(z) = X>,s> ( ' < | * | <r~1), 
—00 

which may be called its generating f unction, is regular in an open ring 
2 This remark explains the presence of several geometrical papers in our bibliog

raphy. As seen from this brief description of contents, the paper is concerned with 
the most general smoothing operations on the one hand (§1), with a very restricted 
class on the other (§§3, 4). For the middle-range of operations which are useful in 
the practice of smoothing data we refer to the excellent expositions by Whittaker-
Robinson [ l7] , and Wolfenden [15]. For the related subject of osculatory interpola
tion see Greville [29] and Schoenberg [31 ]. 
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containing the circle \z\ = 1 . Let us assume, as is generally the case in 
practice, that the given sequence of "weights" am is symmetric about a0: 

(1.3) am = «-m (m = 1, 2, • • • ). 

I t was pointed out in [31 ] that the generating function (1.2) or, 
equivalently, the characteristic function 

(1.4) 4>(u) = F(eiu) = a0 + 2ax cos u + 2a2 cos 2u + • • • 

may be used to advantage in describing some of the useful attributes 
of a moving average formula (1.1). Thus the formula (1.1) will leave 
unchanged, or invariant, sequences {xm\ which are equidistant 
ordinates of polynomials of degree 2fe — 1 , but of no higher degree, 
provided <fi(u) has an expansion in powers of u which is of the form 

(1.5) 4>(u) = 1 - \u2k + • • • (X y* 0). 

Good arguments were presented in [3l] and still better ones in [38] 
to the effect that a moving average formula (1.1) could be called a 
smoothing formula only if (perhaps also if) its characteristic function 
satisfies the condition 

(1.6) \<j>(u) | < 1 if 0 < u < 2TT. 

This condition implies that the coefficient X of (1.5) is positive.3 

1.2. Behavior of the iterates of (1.1): De Forest's problem. A 
conclusive argument in support of the necessity of our condition 
(1.6) is furnished by the solution of the following problem first stated 
and attacked by Erastus L. De Forest.4 If we subject the given se-

3 During his connection in the last war with the Data Analysis Section of the 
Boeing Aircraft Company, Dr. C. Lanczos has reached the same criterion (1.6) 
from the following point of view: If the formula (1.1) is applied to the simple vibra
tion of frequency u, xv — eiuV ( — o o O < o o ) , we obtain the transformed sequence 
ym — eium<J>(—u) (—00 <m< <*>), which is again a simple vibration of frequency u, of 
amplitude \<f>(—u)\. Requiring that the amplitude of every simple vibration with 
frequency in the range 0<u<2w be diminished in the process, Dr. Lanczos reached 
our condition (1.6). This interesting remark shows that the values of <f>(u) play the 
role of characteristic values of the matrix of the linear operation (1.1). The condi
tion (1.6) is now seen to be related to the conditions found by R. Oldenburger and 
A. Dresden (for references see [47]) which insure that the wth power of an ordinary 
matrix converges to a limit as n tends to infinity. 

4 Erastus L. De Forest (1834-1888) contributed numerous original and funda
mental papers on various aspects of the problem of fitting and smoothing irregular 
series by means of polynomials. His pioneer work remained practically unknown, 
however, until 1924, when its importance in relation to the graduation processes of 
actuaries was described by Hugh H. Wolfenden in his paper [ l5] . A further summary 
of De Forest's contributions can be found in H. H. Wolfenden, The fundamental prin
ciples of mathematical statistics, Toronto, Macmillan, 1942. 
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quence {xm} n times in succession to the same transformation (1.1), 
we obtain a linear transformation 

|tas—00 

which is the w-fold iterate of (1.1). What is the asymptotic behavior of 
the coefficients of (1.7) as w—»<x> ? This question was answered for the 
case when all coefficients of (1.1) are non-negative, hence necessarily 
that & = 1 in (1.5), by De Forest and by G. B. Dantzig [26].5 A 
general solution is as follows: 

Let (1.1) be such that (1.3), (1.6), and (1.5) are satisfied, hence 
X>0. Let 

1 f °° 
(1.8) Gk(x) = — I e~v2k cos vxdv, 

2ir J -oo 

which is the normal function 

1 
(1.9) Gi(x) -x'14 

27T1 '2 

if & = 1, otherwise (& = 2, 3, • • • ) an entire even function having in
finitely many zeros, all real. The coefficients of (1.7) satisfy the asymp
totic relations 

n m\ (n) /x \~1/2ks- / r\ \~1/2k\ i / ~1/2k\ 
(1.10) av = (Kn) Gk{v{Kn) ) + o(n ), as n—» oo, 
where the "little o" symbol holds uniformly f or all integers v (see Schoen
berg [38]). I t was also shown there by examples that (1.10) no 
longer holds if the equality sign is allowed in (1.6), and that the 
coefficient a£n) diverges exponentially to + c©, as n = 2m tends to in
finity through even values, if the inequality (1.6) is reversed any
where in the range (0, 27r). 

5 The following additional references, which I owe to T. S. Motzkin, came too 
late to my attention for inclusion in our bibliography: The case of non-negative 
weights (& = 1) in the more general form where the convoluted formulae need not be 
identical was treated by Eugen Slutzky in a Russian paper of 1927. See its English 
translation The summation of random causes as the source of cyclic processes, Econo-
metrica vol. 5 (1937) pp. 105-146, in particular pages 134-138. Concerning the same 
problem see also R. v. Mises, Wahrscheinlichkeitsrechnung und ihre Anwendungen in 
der Statistik und theoretischen Physik, Leipzig and Wien, 1931, and R. v. Mises, 
Generalizzazione di un teorema sulla probabilité delta somma di un numéro illimitato di 
variabili casuali, Giornale dell' Istituto Italiano degli Attuari vol. 5 (1934) pp. 483-
495. 
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A corresponding discussion of smoothing of periodic data is re
lated to the so-called finite Fourier series (see Schoenberg [47]). 
Some unpublished work by Fritz John deals with the analogue of 
(1.10) for the periodic case. 

1.3. A differential equation. The connection with differential equa
tions is briefly as follows. Observe that (1.8) implies 

(1.11) U(x, t) = t~li™Gk(xt-li2k) = — f e~tv2k+ixvdv (t > 0). 

The function under the integral sign is immediately seen to satisfy, 
for all v, the differential equation 

du d2ku 
(1.12) — = (-l) f c+x , 

dt dx™ 
which reduces to the familiar heat-equation if & = 1. It follows that 
also U(x, /), defined by (1.11), is a solution of (1.12) in the upper 
half-plane / > 0 . On the other hand, applying to (1.8) Fourier's in
version formula and setting # = 0, we find that 

r Gk(x)dx = 1. 

These remarks imply the following: If/(x) is continuous and o(\ x\ ~2) , 
say, as \x\—>oo, then 

ƒ 00 

Gk((x - lOr1'")/^)* (/ > o) 
- 0 0 

is a solution of the differential equation (1.12) satisfying the boundary 
condition 

lim u(x, t) = j{x). 
t-*+o 

This particular solution u(x, i) may now also be constructed as 
follows: Draw in the (x, /)-plane the lattice of points 

(vAx, nAt) (v = 0, ± 1, • • • ; n = 0, 1, • • • ). 

Define in it a lattice-function uv%n by starting with 

« M = J{vAx) 

and computing the values along each horizontal line from those on 
the line below by means of (1.1). This evidently amounts to iterating 
(1.1), so that we have 
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(1.14) uv,n =» ] £ aZjivAx). 

For any given x and / > 0 , (1.14) goes over into (1.13) under the fol
lowing circumstances: We first connect the mesh-sizes Ax and At 
by the relation 

(1.15) At = \(Ax)2fc. 

If the integers v and n are such that 

vAx—>x and nAt—*t, as Ax—» + 0, 

then 

Uytn UK X, *)* 

This follows readily from (1.14) and (1.13), in view of the asymptotic 
relations (1.10): (1.14) differs from a Cauchy-Riemann sum for the 
integral (1.13) by a quantity which tends to zero because of the uni
formity in v of the error term of (1.10). 

I t is interesting to note that it matters little which formula (1.1) 
we use in this construction, as long as it preserves polynomials of 
degree 2& — 1 and of no higher degree, i.e. satisfies (1.5), and above all 
tha t it satisfy the stability condition (1.6), the term "stability" mean
ing here stability on iteration. For the general theory of Fritz John 
of which the above situation (for k = l) is merely a very special 
example, see [49]. 

2. VARIATION-DIMINISHING LINEAR TRANSFORMATIONS 

2.1. Fundamental criteria. Let 

n 

(2.1) y< - Z) aik*k (i = 1, • • • , w) 
J f c = l 

be a linear transformation where coefficients and variables are all 
real. Let v(x) denote the number of changes of sign in the sequence 
Xk and v(y) the similar number for y^ F. Klein discussed the problem 
of comparing the upper bounds for the number of real roots of an 
algebraic equation in a given interval, as furnished by the Descartes 
rule of signs and similar theorems. These bounds are usually equal 
to the number of changes of sign of sequences arising from the coeffi
cients of the given equation by linear transformations. For this 
reason, Klein's problem led Schoenberg [19; 21 ] to study transforma
tions (2.1) which have the property that 

(2.2) v(y) ^ v(x), 
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for all values of the variables Xk. Such transformations were called 
variation-diminishing by Pólya. 

The matrix i4=||a»-fc|| is called totally positive, provided all its 
minors of all orders are non-negative [19, p. 322]. A useful criterion 
for such matrices, based on a lemma of M. Fekete [4, pp. 4-6] , was 
recently given by Anne Whitney [58]. Totally positive square-
shaped matrices were thoroughly investigated by Gantmakher-Krein 
[24; 44] in connection with boundary-value problems arising in vibra
tion problems. Schoenberg [19] showed that (1.1) is variation-dimin
ishing if A is totally positive. Assuming that the matrix A is of 
rank n, he also proved the following: (1.1) is variation-diminishing 
if and only if A enjoys the property that two minors of A, of equal 
orders, are never of opposite signs. If the rank r of A is unrestricted, 
Motzkin [22] proved that (1.1) is variation-diminishing if and only if 
two minors of A, of the same order s, are never of opposite sign if 
s<r, while if s = r they should never be of opposite signs if they 
belong to the same set of r columns of A. For a proof of this theorem, 
differing from Motzkin's, see Schoenberg-Whitney [51 ]. There also 
cyclic variation-diminishing transformations are characterized: (1.1) 
is said to be cyclic variation-diminishing provided it is such that the 
inequality 

(2.3) vc(y) g vc(x) 

always holds, where vc(x) is the number of changes of sign in the 
sequence Xi, • • • , xn counted after these variables are placed cycli
cally along a circle, with a similar definition for vc(y). 

2.2. A theorem of Gantmakher-Krein and convex curves. Let us 
assume that the rank of the matrix A, of (2.1), is equal to n. Choose 
n among the linear forms yi which are linearly independent. As 
their values may be chosen at wish, for instance alternating in sign, 
it is clear that supx v(y)^n — l. The theorem of Gantmakher-Krein 
answers the question as to when we have the equality sign in this 
relation and may be stated as follows: 

The system (1.1), of rank equal to n, is such that we always have 

(2.4) v{y) S n - 1 

if and only if all nonvanishing minors of order n, of A, are of the same 
sign. See Gantmakher-Krein [44, Theorem 3 on p. 297], and also 
Schoenberg-Whitney [51, Theorem 1 on p. 142].6 

6 Anne Whitney and the author were unaware of the book by Gantmakher and 
Krein when [51 ] was published. However, the priority clearly belongs to the Russian 
authors. 
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This theorem seems fundamental for two reasons: Firstly, it im
plies easily the results of Schoenberg and Motzkin concerning varia
tion-diminishing transformations and plays a similar role in a discus
sion of the related problem (2.3). Secondly, it seems indispensable in 
a discussion of curves which are convex in higher-dimensional 
spaces. The use of the term "convex" in this connection requires 
some explanation. We mention first the concept of an arc in Em of 
(linear) order m, due to C. Juel, intensively studied and generalized 
by O. Haupt, A. Marchaud [18], P. Scherk [25], and others: A 
Jordan arc in Em is of order m provided it is intersected by every 
hyperplane in at most m points. A related but distinct notion is as 
follows: A continuous arc 

(2.5) A . X{ — %i\l>j (i = 1, • • • , m\ a g / g 0) 

in the euclidean space Em is said to be convex in Em if it crosses every 
hyperplane of Em a t most m times. If we also require that Y should 
not be contained in a lower-dimensional flat space, then we say that 
r is convex on Em (see Schoenberg [5ó].) 

The following criterion is an almost immediate corollary of the 
theorem of Gantmakher-Krein: The arc I \ defined by (2.5), is convex 
on Em if and only if the determinants 

(2.6) 

Xi(t0) 

Xi(h) 

Xm(to) 

xm(h) 

1 X\\t>m) ' ' ' Xm\tm) 

(a£t0<h<---<tmÛP) 

do not all vanish and the nonvanishing among them are all of the same 
sign. The case when m = 2 seems intuitively obvious, for the theorem 
says that the plane arc P — P(t) is convex on E2 provided the non-
degenerate ones among the triangles P(to)P(ti)P(t2) have all the same 
orientation. All convex curves are rectifiable. If V is convex on Em 

and m is odd, then the arc Y can never close. In even-dimensional 
spaces E2n we may well have closed curves convex on E2n as seen by 
the example of the special curve 

1 1 
Co: xi = cos t, X3 = — cos 2t, • • • , x2n-\ = — cos nty 

2 n 
(2.7) . 1 1 

X2 = sin t, Xi = — sin 2/, • • • , x2n = — sin nt 
2 n 

(0 S t ^ 2TT). 
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That Co spans Ein is clear and equally so that Co is convex in E2w: 
If l(xi) is a linear function and if we substitute the Xi from (2.7), 
then l(xi) becomes a real trigonometric polynomial of order n which 
is known to change sign within a period at most 2n times. 

Let 

(2.8) C: Xi = Xi(t) (i = 1, • • • , 2n\ 0 S t ^ 2TT), 

be a closed curve in E2n defined by continuous functions of period 27r. 
C is found to be convex on E2n provided the above restriction on the 
signs of the determinants (2.6) (with m = 2n) holds for parameter 
values restricted by the inequalities to<h< * • * </n<^o + 27r. This 
criterion leads naturally to a useful expression for the 2w-dimen-
sional volume V= V(K) of the convex hull K = K(C) of the curve 
C. Indeed, assuming the Xi(t) to be absolutely continuous, as is 
the case if / is proportional to the arc-length, then F can be expressed 
by the following Lebesgue integral 

V = { • • • I de t \\xi(h), Xi(ti), Xi(t2), * / ( / 2 ) , • • • , 
nl(2n)Uo J o 

%i(tn), Xi(tn)\\dh ' • • dtm 

where e = 1, or — 1, depending on the common sign of the determinants 
(2.6). This expression for V, which reduces to the classical area-
integral if w = l, allows one to generalize, by A. Hurwitz's method of 
Fourier series [3], the classical isoperimetric inequality to closed 
curves in E2n' If the closed curve C is convex in £2n, of length L, then 
the following inequality holds : 

(2.9) L2n ^ (2irn)nnl(2n)lV, 

with the equality sign if and only if C is similar to the curve Co, defined 
by (2.7), or to its reflexion (see [56]). If n = 1, (2.9) reduces to the well 
known inequality L2 ^ 4ir V for convex curves in £2 , V being the area 
enclosed by C, and where equality holds only if C is a circle. 

I t is to be expected that this new approach to curves convex in 
Em will be fruitful and work in collaboration with T. S. Motzkin is 
in progress. In concluding it should be pointed out that the notion of 
convexity of curves is also related to the Chebyshev systems of func
tions (Kellogg [9; 10; 11 ], S. Bernstein [16], Laasonen [42]) and 
to the systems satisfying Descartes' rule of signs (Pólya-Szegö [14]). 
Especially close is Polya's discussion [13] of linear homogeneous dif
ferential equations. Indeed, the notion of a curve convex on Em being 
affine invariant, such differential equations would seem to be the 
appropriate tool. 
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3. VARIATION-DIMINISHING INTEGRAL TRANSFORMATIONS 

3.1. Polya's work of 1915. An entire function ^(s) may obviously 
be represented as a limit of a sequence of polynomials, uniformly con
vergent in every bounded domain of the complex plane : The sections 
of its expansion in powers of 5 have this property. Laguerre [ l ] 
and Pólya [5] have investigated the following problem : Which entire 
ty(s) ( ^0 ) are limits of a sequence of real polynomials having only 
real zeros? They found this to be the case if and only if ^f(s) is of the 
form 

oo 

(3.1) ¥(*) = Ce-y°2+**smll (1 + M < r V 
i 

(C ^ 0, 7 ^ 0, 8, 8, real, £ 8* < oo). 

They also showed that the subclass of those functions $(s) which are 
limits of polynomials with only real zeros and non-negative coeffi
cients is characterized by the representation 

oo 

(3.2) *(s) = C ^ " I I (1 + M (C > 0 , 7 £ 0, 8, è 0f £ 8, < oo). 
l 

See also Szâsz [28]. For an extension of these results to entire func
tions of n variables see Motzkin-Schoenberg [50]. 

Pólya and Schur [7] have described these classes in terms of their 
Taylor expansions: A formal real power series 

a,+ {ax/V)s + (flj/2!)58 + • • • 

is the expansion of a function of the form (3.1) if and only if the 
polynomials 

(3.3) Pn(x) = a0 + (n J axx + • • • + anx
n (n = 1, 2, • • • ) 

have only real zeros; also that it is the expansion of a function of the 
form (3.2) if and only if the polynomials (3.3) have only real zeros 
and non-negative coefficients. 

In [8], Pólya considered the subclass 

00 

(3.4) ¥(*) = Ce-y*i+8°]J (1 + 8,j)*-V 
l 

(C > 0, 7 è 0, 8, 8, real, 0 < y + ][) £ < <*>), 

of those functions of the class (3.1), with ^ ( 0 ) > 0 , which are not 
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exponentials C exp {ôs}, and investigated the power series expansions 
of their reciprocals 

(3.5) 

He discovered the following properties: 
1. The Hankel determinants 

(3.6) 

Mo Ml * * ' Vn 

Ml M2 • • • Mn+i 

Mw Mn+1 M2n 

are all positive (n = 1, 2, • • • ). 

2. If ƒ(#) is a real polynomial, then 

(3.7) 
1 

o ?! * ( # ) 

is a polynomial having no more real zeros than ƒ (x). Conversely, if a 
real formal power series ^( — l)vfivs

v/vl (MO>0) is such that g(x), 
defined by (3.7), has never more zeros than the arbitrary polynomial 
/ (x) , then it is the expansion (3.5) of the reciprocal of a function 
"*($) of the form (3.4). 

In 1920 Hamburger [12], using his then recent solution of the 
moment problem bearing his name, concluded from (3.6) that the 
coefficients M?> of (3.5), are the moments of a nondecreasing function 
yp(x) and that (3.5) may be represented as a Laplace-Stieltjes integral 

*(*) J-co 
sd\p(%) 

within the vertical strip of regularity of the left-hand function, con
taining the origin of the 5-plane. More recently Hirschman-Widder 
[40] and Schoenberg [34; 55] have established a representation of 
(3.5) in terms of a bilateral Laplace integral 

(3.8) 1 . f' 
is) J-*(s) 

e~x*A(x)dx. 

Here A(x) is a frequency function,7 i.e. A(x) ^ 0 , which may be repre-
7 Widder [35] interprets A(x—y) as the Green's function of a differential system 

for the whole real axis. For a thorough investigation of differential systems in a, finite 
range whose Green's functions are totally positive (Kellogg kernels) see Gantmakher-
Krein [44]. 
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sented by the familiar inversion formula 

1 C t0° exs 

(3.9) A(x) = I ds (•-<*>< # <oo), 
2iri J _ioo^(s) 

where the integral is defined as usual as a principal value. 
Since 

xvA(x)dx, 
- 0 0 

we may now write the differential operation (3.7) as an integral 
transformation. Indeed, if f(x) is a polynomial, we find 

ƒ "A(O/(* - odt=ƒM
 AW I i : i/«(«K-o*} * 

= Z ;—/<r>(*) = «(*) 
or 

A(* - t)f{t)dt. 
- 0 0 

Hence for polynomials, (3.10) being equivalent to (3.7), this integral 
transformation is inverted by 

(3.11) ƒ(*) - *(D)s(*)_, 

where the operator ^(D) is to be applied after its expansion in powers 
of D. This theory goes back to Pólya's paper [8] of 1915, except for 
the integral representations (3.8) and (3.10), the transformation 
(3.10), for polynomials, appearing in Polya's paper in terms of the 
equivalent differential operation (3.7). 

3.2. Pólya frequency functions. The determining functions A(x), of 
(3.8), may be described in terms of the following definition: A fre
quency function A(x), i.e. a measurable non-negative function such 
that 

ƒ 00 

A(x)dx 
^-oo 

0 < I A(x)dx < oo, 
J -00 

is said to be a Pólya frequency f unction provided that for any two sets 
of numbers 

(3.12) xi < x2 < • • • < xn, h < h < • • • < /„ {n = 1, 2, • • • ) 
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we have the inequality 

(3.13) de t | |A(*<- /,)|ji,w ^ 0. 

In terms of this definition, the following theorem holds: If ^(s) is of 
the form (3.4), then its reciprocal may be represented in the form 
(3.8) within the vertical strip of regularity of 1/\F which contains 
the origin, and where A(x) is a Pólya frequency function. Conversely, 
given a Pólya frequency function A(x), then its Laplace transform 
(3.8) converges within such a vertical strip and represents the re
ciprocal of an entire function of the form (3.4). See Schoenberg 
[34; 55]; also Wintner [23, Theorem l ] . 

Similar results concerning the ordinary Laplace transform are 
connected with entire functions of the form 

00 

(3.14) $(s) = Cet*Yl(\ + dvs) 
l 

(C> 0, 7 ^ 0, ô, â 0, 0 < 7 + E 8, < « ) . 

These functions forming a subclass of the class of functions (3.4), 
the previous theorem applies to their reciprocals. However, the func
tion ^(5) of (3.8) is of the special form (3.14) if and only if the Pólya 
frequency function A(x), of (3.8), vanishes for all negative values of x 
(see [34; 55]). 

A related question is the following : The meromorphic function on 
the left-hand side of (3.8) has in general several vertical strips of regu
larity separated by vertical lines through its poles. What is the na
ture of the Laplace integral representations of 1/\F in the strips 
which do not contain the origin? An answer requires the following 
definition: A real measurable function A(x) (—00 <x< 00) is said to 
be totally positive provided it satisfies the following three conditions: 
1. (3.12) implies (3.13), 2. A(x) is different from zero for at least two 
distinct values of x, 3. A(x) ^ e x p { a x + ô } . It is clear that the Pólya 
frequency functions are totally positive. Moreover, it can be shown 
that every totally positive function turns into a Pólya frequency 
function, upon multiplication by appropriate exponentials. As a 
result the above stated correspondence between functions ^(s) and 
Pólya frequency functions now extends to a one-to-one correspond
ence between functions ^(s) and the totally positive functions A(x)f 

by the relation (3.8) with the sign changed if necessary, in vertical 
strips of regularity for 1 / ^ which are no longer required to contain 
the origin. In particular, a given lfö(s) allows a representation (3.8) 
in each of its strips of regularity with a different totally positive A(x) 
corresponding to each of the strips (see [34; 55]). 
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As particular examples of Pólya frequency functions we mention 

1 

(3.15) Ai(s) = e~* \ A2(x) = er*^, Az(x) = > 
cosh x 

whose respective transforms 7r1/2e*2/4, r ( s + l ) , 7r/cos (TTS/2) are seen 
to be reciprocals of functions of the form (3.4). As a nontrivial ex
ample of Pólya frequency functions vanishing for x < 0 we mention 

AA(x) = 
X) (-l)v+1v2e-xv2 if x > 0, 

if x ^ 0, 

whose transform JJi° ( l+sVV2)"1 is indeed the reciprocal of a func
tion of the form (3.14). Its cumulative distribution function 

£ Ai(x)dx = 
£(-l)'e—2 
— 0 0 

k o 

if x > 0, 

if x ^ 0 

is the subject of the Kolmogorov-Smirnov limit theorem (see Feller 
[36]). 

Given a Pólya frequency function A(x) in terms of its transform 
(3.8) and two sets of numbers (3.12), Schoenberg-Whitney [43; 57] 
have answered the question as to when the determinant (3.13) is 
actually positive. For a discussion of the differentiability properties 
of Pólya frequency functions see [55, Corollary 2], Widder [35, 
Theorems 7 and 12], Hirschman-Widder [40]. For a new character
ization of Pólya frequency functions as the only possible limits of 
so-called spline frequency functions see Curry-Schoenberg [33]. Con
cerning the interesting property of Pólya frequency functions of being 
"bell-shaped" see Hirschman-Widder [40], Schoenberg [34], and a 
related note [45] by Hirschman. 

3.3. Smoothing properties of Pólya frequency functions. The re
markable smoothing property of the transformation (3.7), or (3.10), 
to the effect that the polynomial g(x) has no more real zeros than 
f(x), suggested the problem of finding the most general transforma
tion of the form (3.10) which is variation-diminishing. By this we 
mean, obviously enough, the following: Let v(J) (the number of 
changes of sign of f(x)) denote the supremum of the number of 
changes of sign in the sequence f(xi), • • • , / (x n ) , where — «> <#i 
< • • • < x n < + oo, w = 2, 3, • • • . Let A(x) be summable, not 
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= 0 p.p., and such that, for every bounded f(x), (3.10) should imply 
the inequality 

v(g) â v(f). 
It turns out that this is the case if and only if A(x) or —A(x) is a 
Pólya frequency function. The variation-diminishing property of 
(3.10) therefore characterizes the Pólya frequency functions. For 
a somewhat stronger result in terms of Stieltjes integrals see Schoen
berg [46]. The author's old theorem [19] to the effect that the linear 
transformation (2.1) is variation-diminishing if the matrix A is totally 
positive is the origin of the peculiar property (3.13) of Pólya fre
quency functions. Indeed, (3.10) may be regarded as a linear trans
formation defined by the matrix A(x — t), while (3.13) expresses its 
total positivity. 

3.4. Inversion and representation problems. The prototype of the 
functional transformations to be now discussed is the Laplace trans
formation 

ƒ» 00 

er*u<j>(u)du. 
o 

Well known results are its inversion by means of the Post-Widder 
inversion operator (Widder [32, Chap. VII]) and the Bernstein-
Widder theorem which characterizes the functions representable in 
the form 

ƒ» CO 

e~zuda(u) (da(u) è 0) 

o 
by the condition of complete monotoneity [32, Chap. VII, §14], 
Following Widder we now set w = exp (/), s = exp ( — x), whereupon 
(3.16) changes into 

ƒ 00 

A2(* - t)f(t)dt, 
- 0 0 

where g(x) =y(e~x)e~x, ƒ(O—0(^0» while A2(x)=exp ( — x — e~x) is 
one of the Pólya frequency functions (3.15). The Laplace transforma
tion (3.16) is thus seen to be equivalent to a special instance of the 
convolution transformation (3.10).8 For wide classes of Pólya fre-

8 This explains, in view of Article 3.3, the variation-diminishing properties of the 
Laplace transformation discovered by Laguerre and Pólya. See Pólya-Szegö [14, 
Problem 80, p. 50]. 
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quency functions A(x), Hirschman and Widder have extended the 
above results concerning the Laplace transformation to the general 
transformation 

ƒ 00 

A(x - t)f(t)dt, 
- 0 0 

obtaining an inversion theory (Widder [3S; 52; 53], Hirschman-
Widder [37; 40]) and a representation theory (Hirschmann-Widder 
[4l]). Their results include as special cases earlier work by R. P. 
Boas and H. Pollard on the so-called Stieltjes transformation (which 
again may be reduced to (3.18) if A(x) =A3(x) = l/cosh x) and its 
iterates. In case/(x) is a polynomial we have seen that (3.18) is in
verted by the differential operation (3.11). However, for arbitrary 
f(x) the relation (3.11) is meaningless. 

In order to illustrate the Hirschman-Widder inversion theory for 
(3.18) and to see how it goes beyond Polya's formal inversion by 
(3.11), let us consider briefly the following special case discussed by 
Widder, The inversion of a generalized Laplace transform, Proc. Nat. 
Acad. Sci. U.S.A. vol. 33 (1947) pp. 295-297: Let A(x) be a Polya 
frequency function defined by the relations (3.8) and (3.4), with 
7 = 0 and all 8,5^0. If the given function ƒ(x) is continuous and sum-
mable (fÇzC -L), then (3.18) is inverted by the relation 

(3.19) ƒ(*) = lim ft (1 + iJ>)g(x - Ê *) ( - «> < x < oo). 

A proof follows readily from the relation 

ƒ 00 

e~sx(l + ÖD)A{x - S)dx} 
- 0 0 

where S is a real constant, and which follows from (3.8) by integra
tion by parts. Applying the transformation (3.20) to (3.8), n times 
in succession with b = Si, 82, • • - , 8«, we obtain the relation 

00 ghvs /» 00 

(3.21) n = I er*9An(x)dx, 
p=n+l 1 "f* SpS J _oo 

where An(x) is evidently a Polya frequency function explicitly given 
by 

(3.22) A„(x) = ft (1 + M>)A (x - Ê S„). 
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If we now operate with 

f [ (1 + dvD)e-*»D 

on both sides of the relation (3.18), we obtain, by (3.22), 

ƒ•(*) s Ê (1 + *J>)g(x - È «M) = ƒ °°An(* - /)ƒ(/)*, 

and we are to show that 

ƒ • 00 

(3.23) fn(%) = I An(x — t)f(t)dt—>f(x)t a s w —» oo. 
J -00 

This follows from the fact that (3.23) is a singular integral satisfying 
the classical conditions of Jordan: 

ƒ 00 

An(x)dx = 1 for all n, 
- 0 0 

(ii) lim I An(x)dx = 0, for every 8 > 0. 
n->oo J \x\t8 

Indeed, on expanding both sides of (3.21) in powers of s and com
paring coefficients we find 

ƒ 00 /» 00 00 

An(x)dx = 1 , I x2An(x)dx = 2 ^ 
—oo «J —oo n-4-1 

2 

= 0"w. 

w+1 

The fact that the variance <s\ converges to zero, as n—» oo, implies the 
property (ii) by a familiar Chebyshev argument. See Widder, loc. 
cit., where it is shown that the Post-Widder inversion operator for 
the Laplace transformation (3.16) is a special case of (3.19). 

See Widder [52; S3] for the particularly interesting case of 
A(x) =Ai(#) =exp ( — x2) when (3.18) becomes the Weierstrass trans
form. 

4. VARIATION DIMINISHING SEQUENCE TRANSFORMATIONS 

4.1. Totally positive sequences. The sequence transformation 

00 

(4.1) yn = S an-vxv 
j/=—oo 

gives rise to a theory in some respects analogous to the theory of §3. 
Assuming that ] C | a " | <°°> we say that the transformation (4.1) 

file:///x/t8
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is variation-diminishing, provided that for every bounded sequence 
{xn}, (4.1) implies the inequality 

(4.2) v{y) g v(x). 

Here, as before, v(x) and v{y) denote the numbers of changes of sign 
in their respective sequences and may well be infinite. Since x0 = 1, 
xn = 0 (if HT^O) implies that yn = an, for all n, we see that (4.2) im
plies that v(an) = 0. We may therefore assume all an non-negative. 

A sequence {an} is called totally positive provided that the matrix 

(4.3) A = | | a w | | ( - oo < ij< oo), 

is totally positive, i.e. has only non-negative minors, and that {an\ 
is not a geometric progression of the form an = Crn(C^0, r > 0 ) . We 
say that the sequence {an} is totally positive normalized provided {an} 
is totally positive and the series ^an converges. The totally positive 
normalized sequences are the discrete analogues of the Pólya fre
quency functions of §3. A restricted kind of total positivity (&-times 
positive sequences) was discussed as early as 1912 by M. Fekete 
[4]. 

We saw in §2 that the transformation (2.1) is variation-diminishing 
if its matrix | |aa|| is totally positive. In our case of the convolution 
transformation (4.1) this condition is not only sufficient but also 
necessary as stated by the following theorem: The transformation 
(4.1) is variation-diminishing if and only if the sequence {an) is totally 
positive normalized (see [38]). 

4.2. Generation of totally positive sequences: Edrei's theorem. In 
view of the last theorem, the problem of constructing variation-
diminishing transformations (4.1) is equivalent to the problem of 
constructing sequences {an} which are totally positive and normal
ized. A first step in this direction was made in [38] where the follow
ing was proved: If 

0(1 + ̂ )0(1 + ^ ) 
(4.4) F(z) = Ce!*+h*~\m - ^ \ 

1 1 

is a meromorphic function in the ring 0 < | z\ < oo, such that its con
stants satisfy the conditions 

C> 0, a ^ 0, b ^ 0, m integer, av è 0, & ^ 0, 

0 S yv < 1, 0 ^ ôv < 1, Z (<x* + ft + 7v + 8,) < oof 
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and if we expand F(z) in a Laurent series 

00 

(4.6) F(z) = E ««2" (r < | « | < r-1) 
— 0 0 

in the ring containing the unit circle inside, then the sequence \an} 
so generated is totally positive normalized.9 

This was easily established, the real difficulties arising as soon as we 
raise the following inverse problem : Given a totally positive normal
ized sequence {an}> it is not hard to show that the corresponding 
Laurent series (4.6) converges in an open ring containing the unit 
circle and defining an analytic function F(z). Is it true, then, that 
F{z) is meromorphic in§<\z\ < °° and of the form (4.4), (4.5)? 

Let us look at some examples. The following remark is obvious: 
If A(x) is a Polya frequency function (Article 3.2) then an=A(n) 
( — o o < ^ < o o ) i s a totally positive sequence which is normalized ; for, 
indeed, ||a»_j|| =||A(i—j)|| is a "submatrix" of A(x — t). Using the 
functions (3.15) we now obtain sequences {an} for exploratory pur
poses. Choosing A(x)=exp (~hx2), where h is a positive constant 
and setting q = exp ( — h), we obtain the sequence an—A(n)=qn2 

which is totally positive and normalized. That the corresponding 
generating function (4.6) is of the form (4.4), (4.5) is shown by the 
famous Jacobian identity 

00 00 

(4.7) £ ?"**" = Cx I I (1 + qin+1z)(l + qin+lz-1) (0 < | z \ < « ) , 
—oo n—0 

where C\ does not depend on z. For the same reason (see (3.15)) also 
the sequence 

an = As(hn) = 1/cosh (hn) 

is totally positive normalized. The following identity which is 
equivalent to the Fourier expansion of the elliptic function dnu: 

A 1 
2 J 2W 

_oo cosh (hn) 

9 In Rademacher-Schoenberg [30, pp. 156-159], the function -1//<)(( 13s)1'2) is 
expanded, as a numerical illustration, in a Laurent series 52 03nZn in a ring between 
its first and second pole. The extremely smooth behavior of the coefficients wn there 
obtained is explained by the fact that the sequence {wn} is totally positive normalized, 
in view of the result just stated. 

JJ(l + ç2n+l2)(l + g2n+l2~l) 

= C2 —w (q<\z\< r1) 

1 1 ( 1 - q2n+1z)(l - q2n+lz-x) 



218 I. J. SCHOENBERG [May 

shows that its generating function is of the form (4.4), (4.5). 
I t was conjectured in [38] that the answer to the question is 

affirmative. This was recently established by A. Edrei [62] who 
proved the following theorem: If {an\ is a sequence which is totally 
positive and normalized, then its generating f unction (4.6) is necessarily 
of the form (4.4), (4.5).10 

Three noteworthy special cases, stated with their converses, are 
as follows: 

1. If the power series 

T,anz
n 

o 
= i) 

converges for all z, then it represents a function of the form 

00 

(4.8) ey*H (1 + bvz) (7 à 0, K è 0, £ Ô, < oo) 
l 

if and only if the matrix 

II 0o 0 0 • • • 

\\ &i #o 0 • • ' 

A = #2 #1 #0 ' • ' 

is totally positive. 
2. If the Laurent series 

00 

J2anz
n 

—00 

converges for all s 5^0, then it represents a function of the form 

00 00 

Ceaz+b*~lz™U(l + avz)II (1 + ft*-1) 
(4.9) 

(C ^ 0, a ^ 0, b ^ 0, m integer, av ^ 0 , f t ^ 0 , ^ (a, + p9) < oo) 

10 Notice the interesting symmetry of (4.4) with respect to reciprocation: Also 
l/F(—z) is of the form (4.4). An easy corollary of Edrei's theorem is as follows: If 
the identity ( ] L 1 „ ^n^XS"*, (~l)nbnzn) = 1 holds in a ring n< \z\ <r2i and if {an} 
is totally positive, then either {bn} or else { — bn} is a totally positive sequence. As 
it happens, this proposition is actually a lemma in Edrei's proof of his theorem. 

It should also be remarked that in analogy with the situation of §3, the Laurent 
expansions of (4.4) in every ring of regularity of F(z) will generate, up to a common 
negative sign, totally positive sequences. 
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if and only if the sequence {an} is totally positive. 
3. If the symmetric Laurent series 

00 

Z) anz
n {an = a-n) 

—00 

converges for all z 5^0, then it represents a function of the form 

Ce*<«"-l>f[ (1 + avz){l + a*-*) 
(4.10) i 

(C ^ 0, a ^ 0, 1 ^ ax à «2 ^ • • • ^ <xn ^ • • • ^ 0, X) <*„ < °°) 

if and only if the sequence {an} is totally positive. 
For a different characterization of the power series expansion of 

entire functions of the form (4.8) see J. Grommer [6, pp. 157-158]. 
A third characterization of the same expansion in terms of the zeros 
of the polynomials (3.3) was stated in Article 3.1. Edrei's general 
theorem should be regarded as a notable contribution to the general 
type of problem initiated by Hadamard in his classical dissertation 
[2]. Of course, the condition of Edrei's theorem that the sequence 
{an\ be totally positive is very strong, but then (4.4), (4.5) show the 
precise nature of the information on F(z) which the theorem furnishes. 
Moreover, the condition is not only sufficient but also necessary. 

Let us briefly review the work leading up to Edrei's theorem. Ais-
sen, Schoenberg, and Whitney [59] investigated totally positive se
quences {an} with the property that an = 0 if n<0, ao = l, and 
showed that their generating function is necessarily of the form 

00 

n (i+«.2) 
00 1 

^ anz
n = e^z) — ; 

II (i - y*) 
1 

where a v ^ 0 , 7 „ ^ 0 , 2^(av+y„) < 00, and where g (z) is entire and such 
that the exponential factor exp {g(z)}, if expanded in powers of z, 
will also generate a totally positive sequence. Combining this result 
with a refinement of Picard's theorem due to R. Nevannlina, Edrei 
[60] showed that necessarily g(z) =yz ( Y ^ O ) , thereby proving his 
theorem for the case when (4.6) reduces to a power series. A different 
approach to this case was given by Edrei in [61 ]. For the general case 
see Edrei [62]. 

4.3. An application of Edrei's theorem. With the problem to be 
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now discussed we return to the stability of smoothing formulae which 
is the theme of §1. In 1946 the author constructed certain classes of 
analytic approximation formulae to given equidistant ordinates {yn} 
( — oo <n< oo), which we need not describe here in detail; they are of 
the "cardinal" type 

00 

ƒ(*) = YJ yvL{% - v), 

L{x) being a certain even entire function, accurate tables of values for 
L(x) and its derivatives being available. Moreover, if yv = P(v), where 
P(x) is a polynomial of degree 2& — 1 (k being a certain fixed num
ber), then ƒ(x) z=P(x). If we now let x — n be an integer, we are faced 
with the natural question whether the sequence transformation 

oo 

/O) = X) L(n - v)yv 
J>=—00 

satisfies our stability (or smoothing) condition (1.6) (see Schoenberg 
[31, Part B, pp. 131-133]). This question was there shown to depend 
on a conjecture which the author was unable to prove at the time. 
The conjecture there formulated is an easy corollary of a theorem to 
be stated and proved below by means of Edrei's theorem. 

We start with the "rectangular" frequency function 

x\ g 1/2, 

* | > 1/2 

2 sinh (s/2) 

(1 if (4.1.) MM- I u j 
having the transform 

ƒ 00 

e~*>Mi(x)dx = 
-00 

and the normal frequency function 

(4.13) Mo(x, t) = — — e-2 / * (t > 0) 

of transform 

ƒ 00 

er*'Mo(x, t)dx = e"2'4. 
- 0 0 

If we convolute M\{x) with itself fe — 1 times and convolute the result 
with Mo(x, /), we obtain a distribution function Mk(x, t) whose trans
form, by (4.12) and (4.14), is evidently 
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ƒ 00 

e-*°Mk(xy t)dx = e*»2'4 

- 0 0 

The theorem to be proved is as follows : The Laurent series 

00 

(4.16) F(z) = S Mk(n, t)zn (0 < | z \ < °o) 
—oo 

admits a product representation 

(4.17) F(z) = C ft (1 + «*)(1 + «rf"1) 

w/^re the av = av(t) are real and satisfy the conditions 0 < a „ < l , 
I>v< <*>, * f e C= IICH-^)-2. 

REMARKS.1 1 1. The conclusion (4.17) "implies" that the sequence 
an = Mk(n, t) is totally positive. This, naturally, will turn out to be 
the case. However, if k>0, the transform (4.15), of Mk(x, /), has 
zeros. I t is therefore not of the form (3.8) and we conclude that 
Mk(x, t) is not a Polya frequency function. We can therefore not 
apply the convenient argument used in Article 4.2 to show that the 
sequence M kin, i) is totally positive. 

2. The argument is of course valid if fe = 0 since MQ{X, t) is the 
normal function (4.13). In this case our conclusion (4.17) is evi
dently true since it reduces to Jacobi's identity (4.7). If k>0, the 
representation (4.17) may be regarded as a generalization of Jacobi's 
relation. 

3. Quite recently, J. Berghuis [54] succeeded in proving (4.17) 
for the two values k = 1 and k = 2 by standard methods of the theory 
of functions. 

A general proof of (4.17) is as follows: We define the successive 
integrals of (4.13) by the relations 

go(x) = Mo(xy t) 

and 

gvM =* I gv-\(x)dx (v = 1, 2, • • • ). 
J -oo 

The Laplace transform of gk(x) is found from (4.14), by successive 
11 The conjecture stated in [31, Part B, pp. 131-132] is as follows: The reciprocal 

of the function F(eiu) admits a representation (*) 1/F(eiu) = £ ^ C2n(t)(2 sin u/2)2n 

whose coefficients are positive and which converges for all real u. This is implied by 
(4.17) as follows: F (^ ) -C l [ (14 -^ 2 4-2av cos u) =Cl[{(l+<*>)*-lav sin2 u/l] 
and (*) follows by reciprocation and expansion in powers of sin2 u/2. 

/I sinh s/2y 
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integrations by parts, to be 

(4.18) f <r*'gk(x)i% = — e<*2/4 (Rs > 0), 
J-co Sk 

whence 

/

CO J 

e~X9gk(x + h)dx = — et9*iAeh9 (Rs > 0). 
sk 

From these relations we draw two conclusions: 1. Replacing s by 
5 + 1 in (4.18) we obtain 

/
oo l 

e-*se-xgk(x)dx = e(ts*+2ts+t)i4 (Rs > _ ^ # 
(s + l)k 

The right-hand side being a reciprocal l/^f(s)y where ^(s) is of the 
form (3.4), we conclude (Article 3.2) that gk(x)e~x is a Polya fre
quency function and hence: 

(4.20) The f unction gk(x) is totally positive. 

2. Writing h = 1/2, h= —1/2 in (4.19) and subtracting one of the 
equations so obtained from the other, we find 

J oo l 

e~xsôgk(x)dx = — et$2f42 sinh s/2, 
-oo S 

where 8 is the symbol of central differencing with unit step. On re
peating the operation altogether k times we find that 

/

oo l 

e~xsbhgk(x)dx = — eu2i*{2 sinh s/2)k. 
sk 

The transform so obtained agrees with (4.15) and we obtain the 
relation12 

(4.21) Mk(x, t) = hkgk(x). 

For integral x — nwe obtain from (4.21) 

Mh(n, t) = bkgk(n) = Akgk(n - k/2), 

a relation which is equivalent to the identity 
CO 00 / fc\ 

YsMktn, t)zn = (1 - z)k X) gk(n + — Jzn 

—00 W=—CO \ ~ / 

(0 <\z\ < 1). 

12 See [31, Part A, p. 85] for a different derivation of the relation (4.21) which is 
used there to construct tables of values of Mk(x,t). 
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Replacing the left-hand side by F{z), in view of (4.16), and replacing 
z by z/2 we obtain 

A 1 / * \ F(*/2) , , 
(4.22) £ -.»(. +-J),-1—j- < 0 < N < 2 ) . 

From (4.20) we conclude that {gk(n+k/2)} is a totally positive se
quence. Therefore {2~ngk(n+k/2)} is a totally positive sequence 
which is also normalized. By Edrei's theorem the left-hand side of 
(4.22) can be continued into the domain 0 < | z\ < °o as a function of 
the form (4.4), (4.5). On the other hand, the right-hand side of (4.22) 
is another such representation valid throughout the region 0 < | z | 
< 00, having as only singularity the pole 3 = 2 of exact order k. On 
comparing these two analytic continuations of the left-hand side of 
(4.22) we conclude that F(z/2) is of the form (4.9) and therefore so 
is F(z). However, the Laurent expansion (4.16) of F(z) being sym
metric, we conclude that F(z) allows a representation of the form 
(4.10), hence 

00 

(4.23) F{z) = Cea<»+*""l>n i1 + <w)(l + ^ - 1 ) , 
1 

where C > 0 , a = 0, l = a i ^ a 2 • • • ^ 0 , ] £ a „ < 00. A proof of (4.17) 
will be complete as soon as we show that the constants satisfy the 
following conditions: 

1. a = 0. 
2. a i < l . 
3. av>0 for v = l, 2, 
PROOF OF 1. If we denote by Mk(x) the convolution of k functions 

all identical with M"i(x), defined by (4.11), then 

(wt)1'2 J -oo 

However, Mk(u) = 0 if \u\ >k/2, hence if x>k/2 we find 

I n fc/2 
M*(x> 0 = T~7777 I e-^2t~lMk(u)du 

(wt)1'2 J -k/2 
I /• fe/2 

< — • I MiMdu-e-i*-*™**'1 

or 
1 

Mk(x, t) < —=—• e~(x-ki2)*r' i i x > k/2. 
(irt)112 
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For appropriate positive constants C\ and y ( T < / ~ 1 ) we therefore 
have Mk(n, t) <Cie~"7n2, for all n, and (4.16) implies the estimate 

00 

F{z) < 2CtJ2 e-tn2zn, if z > 1. 
o 

However, if z>ly all factors of (4.23) are ^ 1 so that a fortiori 

00 

eaz < 2CiY,e-*nzn, if z > 1. 
o 

Since on the right side we have an entire function of order p = 0, we 
must indeed have that a = 0. 

PROOF OF 2. It suffices to show that F( — 1) > 0. This last inequality 
can be derived as follows: Setting s = iu in (4.15) we obtain 

J
00

 2 /2 sin u/2\k 

e~ixuMk(x, t)dx = e~tu >4(— — ) s fa(u) 
-00 \ U / 

and by Poisson's summation formula we obtain the relation 

00 00 

X) Mk(n, t)einu = X) tk(u + 2rv). 
M — — 0 0 P***—00 

Setting u = 7Ty we obtain 

/ 2 \ f c " 1 

*(-!) = ( - ) Z (-1)'» ,„ ^ ,,. *— (2v+1) /4-
\7T / „=„00 (2V + l ) f t 

This is visibly positive if & is even. For odd values of k we write it in 
the form 

(i)V(-1> - ( S + £>-«' orh^-**""' 
and find that each of the two ordinary infinite series indicated has 
terms decreasing in absolute values and alternating sign. Thus the 
sums of these series are positive and again F( —1)>0. 

PROOF OF 3. If only a finite number of av in (4.17) were positive, 
then F(z) would be rational, hence 2 = 0 would be a polar singularity 
for the right-hand side of (4.22). However, the Laurent expansion 
on the left-hand side of (4.22) shows that z = 0 is actually an essential 
singularity. This contradiction completes a proof of the factorization 
(4.17). 

A concluding remark on this subject is as follows. In [31, p. 79], 
it was pointed out that 
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f(x) = ] £ yvMk(oc — v, t) 

is an analytic approximation to the given sequence of ordinates {yn} 
such that 

00 

f(n) = J2 JvMk(n — v, t) 
— 00 

is a smoothing operation in the sense of §1. We can now make the 
stronger assertion that this last operation is variation-diminishing. 
Indeed, as already pointed out, the sequence an~Mk(n, t) is totally 
positive, a fact equivalent to our assertion (see Article 4.1). 

4.4. A few unsolved problems. 1. Our first question concerns the 
proof of Edrei's theorem. The ties between the totally positive func
tions (§3) and totally positive sequences (§4) are apparently not 
as close as to allow a proof of Edrei's theorem along the lines used in 
characterizing Laplace transforms of Pólya frequency functions. Is 
this really in the nature of things or could an "elementary" proof of 
Edrei's theorem be devised, at least for the case when (4.6) is a power 
series? 

2. It was pointed out in Article 4.2 that if A(x) is a Polya frequency 
function, then 

(4.24) an = A(n) ( - <*> < n < co) 

is a totally positive normalized sequence. However, not all such se
quences can be obtained in this way. Indeed, let \an) be a totally 
positive sequence such that its generating Laurent series converges 
in 0 < | z\ < oo, and hence is of the form (4.9). However, let it be dif
ferent from the series (4.7). Such a sequence can not be obtained by 
(4.24), by interpolating a Polya frequency function A(x). The reason 
for this is very simple: Assuming (4.24) to hold, A(x) would have a 
Laplace transform (3.8) which is entire. However, (3.8) and (3.4) 
show that the only Pólya frequency function having an entire trans
form is the normal frequency function. This situation raises the 
question: What is the nature of totally positive sequences obtained by 
(4.24) from Pólya frequency functions? 

3. Let us apply the integral transformation (3.10) to a bounded 
function ƒ (x) of period 27T. Setting 

00 

(4.25) x(x) = E A(* + 2iro), 



226 I. J. SCHOENBERG [May 

the transformation (3.10) becomes 

(4.26) g(x)= f \(x - t)f(t)dt, 
J o 

which shows that g{x) is continuous and of period 27r. Assuming A(x) 
to be a Pólya frequency function, (4.26) implies that v(g) ^v(f) (see 
Article 3.3); however, this relation is now meaningless since v(g) 
and v{f) either vanish or else are infinite. It is not difficult to see that 
(4.26) now enjoys the variation-diminishing property in the cyclic 
sense, i.e. it implies 

(4.27) »e(g) g *.(ƒ), 

where these numbers of changes of sign are counted on the circle, or 
within a period. The special case of (4.26) when 

(4.28) K(x) = — — e-*2* (r > 0), 
(7Tr) 1 / 2 

was already noticed by Pólya [20], not in its integral form (4.26) 
but rather in terms of the equivalent convolution of the respective 
Fourier series;13 %W then becomes the Fourier kernel for a ring 
known from heat-conduction. 

The following question arises: What is the nature of the periodic 
functions x(x) w^h the property that the transformation (4.26) is 
cyclically variation-diminishing, i.e. implies (4.27)? Our formula (4.25) 
furnishes such functions but does not produce all of them. Indeed 

x(x) = a + cos t (a constant à 1) 

is readily shown to have the property (4.27), without, however, be
ing of the form (4.25). 

Concluding, let us briefly mention a connection between the trans
formations (4.26) and the convex curves of Article 2.2. Let us assume 

(4.29) f 'X(t)dt= 1, 
J o 

and let C, defined by (2.8), be convex in E2n. Then the new curve 

%(% — t)Xi(t)dt 
o 

(i = 1, • • • , 2n\ 0 ^ x ^ 2TT) 

13 For yet another example of a special function x(#) s e e Pólya-Wiener [27, 
Lemma l ] . 
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is also convex in E2n. Indeed, (4.29) and (4.30) imply the relation 
In /• 2x / In \ 

Ao + ]C AiXi(x) = I %0 ~ 0 Mo + Z) -4*»t(/) J <#, 

and by (4.27): 

Vc(A0 + X) AiXi(t)) ^ z;c(^o + ]C 4 »•*<(/)). 

This relation means that C crosses a hyperplane not more often than 
C does, hence at most In times. 

If we choose in particular the Fourier kernel XT(#) arising from 
(4.25) and A(x)=AT(x), defined by (4.28), then we see that the In 
functions (4.30) are analytic (even entire) functions of the parameter 
x. As r—>+0, we evidently have Xiipc)—>X{{x). This remark proves the 
following : A curve convex in E2n is the limit of a family of curves convex 
in E2n which are analytic. 

Added in proof, April 1953. Professor W. Fenchel kindly pointed 
out to me that also Gantmakher and Krein have been essentially 
anticipated in the discovery of their theorem of Article 2.2 by the 
late J. Hjelmslev in his paper Introduction à la théorie des suites mono
tones, Oversigt over det Kgl. Danske Videnskabernes Selskabs For-
handlinger, 1914, pp. 1-74. Indeed Hjelmslev gives analytic condi
tions in order that the arc Y in Emi defined by (2.5), be of order m. 
The precise statement of his result (loc. cit. p. 62) is as follows: 
If no subarc of T is in Em-\, then T is of order m if and only if all de
terminants (2.6) are positive, or all these determinants are negative. 
Arcs satisfying these determinant conditions are called monotone arcs 
by Hjelmslev. 
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