
EQUIVALENCE RELATIONS IN ALGEBRAIC GEOMETRY 

ERNST SNAPPER 

1. The cycle groups C8. An algebraic variety F i n w-dimensional 
complex projective space P ( n ) is obtained by equating to zero a 
finite number of forms Fi(x0, • • • , xn)f • • • , Fm(xo, • • • , xn) with 
complex coefficients ; F is assumed to be nonempty. If F i s irreducible, 
that is, if V is not the union of a finite number of proper subvarieties, 
it is possible to associate with V in several ways a complex dimension 
d. For example, just as P ( 1 ) is topologically equivalent to a real 2-
dimensional sphere, so can every P ( n ) be represented topologically 
by a 2w-dimensional real complex in the sense of combinatorial 
topology. (See [ l ] ; numbers in brackets refer to the references.) In 
this representation, F goes over into an even-dimensional, connected, 
orientable, closed complex whose dimension is defined as 2d, This 
complex is denoted by K^2d) and F itself by F (d ) . 

Consider the set T8 of irreducible, s-dimensional subvarieties of 
F (d ) for some fixed s, where OSs^d. A function on T8 is called 
integral if its value for every element of T8 is a rational integer, and 
if the function is zero except for a t most a finite number of elements 
of T8; these functions constitute of course an additive group, denoted 
by C8. We identify the integral function which at the elements 
Wi*\ - • • , W$ of T8 assumes the values wi, • • • , tin and which is 
zero everywhere else on T8 with the linear combination niWi^-jr • • ' 
+nhWJf\ Since every W® gives rise to a 2s-dimensional, connected, 
closed, orientable subcomplex of Ki2d\ the above linear combination 
can be interpreted as a 2s-dimensional cycle of K{U) in the sense of 
topology. This fact is the reason why we call the elements of C8 the 
s-dimensional cycles of F (d ) and often consider C8 as a subgroup of the 
2s-dimensional cycle group of Ki2d). A cycle is called effective if, 
considered as a function, it never assumes a negative value; otherwise 
the cycle is called virtual. The effective cycles are clearly closed 
under addition but not under subtraction, and every cycle is the dif­
ference of two effective cycles. 

The group C8 is completely determined by the cardinal number of 
r „ and hence its structure is of no interest. The importance of C8 

lies in the fact that the different aspects of the geometry of F (d) are 
most conveniently studied by means of the equivalence relations which 
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they impose upon C«. Let us first study equivalence relations ab­
stractly. 

2. Abstract equivalence relations. Let G be an additive group, and 
let £ be a nonempty subset of G which is closed under addition 
but not necessarily under subtraction. We furthermore assume that 
each element of G is the difference of two elements of £. In our 
applications, G will be CB and E the set of effective cycles of C8. 

Suppose that a binary relation « has been defined for just the 
elements of E which is reflexive, symmetric, and additive. Additivity 
means of course that if four elements Eu £2, £3, £4 of E are such 
that £ i « £ 2 and £ 3 «£4 , then £ i + £ 3 « £ 2 + £ 4 . In terms of « we 
define a binary relation * for all of G by postulating that for two 
elements A and B oi G, A *B when there exists an X £ G such that 
A+X and B+X belong to E and A+X^B+X. (It is clear that X 
can always be chosen in 22.) 

STATEMENT 2.1. The binary relation * for all of G is reflexive, 
symmetric, transitive, and additive. 

PROOF. If AGG, then A =£1 — £2 where Eu E2GE; A *A follows 
from using £2 as X. The symmetry and additivity of * follow im­
mediately from the corresponding properties of « . If A * B and B * C, 
the additivity of * implies that A+B *B + C. Hence there exists 
an Xl&G such that A+B+X1 and B + C+X1 belong to £ and 
A+B+Xl~B + C+Xl. Using then B+X1 as X, we conclude that 
A *C. 

According to (2.1), the relation * divides the elements of G into 
mutually exclusive classes, which can be considered as the elements 
of a homomorphic image of G with respect to the subgroup F which 
consists of all elements A * 0 as kernel. (0 is the zero element of G.) 
Since A *0 means that there exists an X £ £ such that A+X^X, 
we can also say that F consists of all elements of G which can be 
written as £1—£2, where Eu E2GE and £ i « £ 2 . 

It is clear that if Eu £ 2 £ £ and £1 «£ 2 , then £1 * £2 while the con­
verse may not hold. (Algebraic equivalence gives an example of this.) 
However, if « is also subtractive on £, we prove immediately that 
« and * coincide on £. («* is of course called subtractive if 
£1, £2, £3, £ 4 G £ and £ i « £ 2 , £ 3 « £ 4 , and £ i ~ £ 3 G £ and £ 2 - £ 4 

G £ imply that £ i - £ 3 « £ 2 - - £ 4 . ) 
In algebraic geometry it may happen that a binary relation ~ is 

defined for the elements of £ which is only reflexive and symmetric 
but not additive. (Rational equivalence gives an example of this.) 
We then first go over to a new binary relation « for £ by defining 
that, for two elements E\ and £2 of £, £ i « £ 2 if there exist elements 
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£11, • • • , £ u £ £ and £21, • • • , E^GzE such that £ i = £ u + £ i 2 
+ • • • + £ u , £ 2 = £21+£22+ • • • + £ t * , a n d £ i < ~ j B 2 < f o r i « l f 

h; clearly « is reflexive, symmetric, and additive on E. The relation 
~ is usually given by means of a covering U of £ , where Ex~E% 
then means that £1 and £2 belong to at least one element of U. The 
above additive relation « is then determined by the covering of £ 
which consists of all elements of U together with those subsets of £ 
which are sums of a finite number of elements of [/. (If Ui, • • • , Uh 
££A Ui+ • • • +C/fc is the subset of £ which consists of all sums 
£ 1 + • • • +Eh where EtEUt for i * l , • • • , h.) 

Every covering U of any set whatsoever is a partially ordered sys­
tem, obtained by ordering the elements of U by inclusion. We call 
U an inductive covering if the partially ordered system U is inductive, 
that is, if every totally ordered subsystem of U has an upper bound 
in U. According to Zorn's lemma, every element of U is then con­
tained in a maximal element of U, and hence the maximal elements 
of U then constitute a new covering M of the set which clearly de­
fines the same binary relation ~ as U. The following remarks con­
cerning U and M are useful, as all coverings which occur in algebraic 
geometry are inductive. 

STATEMENT 2.2. The elements of M are mutually exclusive subsets if 
and only if any two elements of U which have a nonempty intersection 
are both contained in the same element of U. Clearly, the relation ~ is 
then transitive. 

PROOF. Let the elements of M be mutually exclusive and let 
Uu U2&U where U\C\TJIT£0. UI and U2 are contained in respec­
tively the elements M\ and M2 of M, and since clearly M1 = M21 the 
desired result follows. Conversely, if the condition on U is satisfied 
and Mi, M2(E.Mt where M1?^M2f then MiP\M2 must be empty since 
distinct maximal elements of U can not be contained in the same ele­
ment of U. 

In algebraic geometry, the elements of U are always certain ir­
reducible algebraic systems of effective cycles. Before discussing 
algebraic systems, let us indicate by means of an example how the 
above notions may be used in topology. 

EXAMPLE 2.1. Let if be a complex in the sense of topology, and let 
G be the additive group of the s-dimensional cycles of K. Hence G 
consists of the finite, linear combinations with integral coefficients 
of the connected, closed, oriented s-dimensional subcomplexes of K. 
Choosing £ = G, we say that A~B, where -4, BÇ~G} if both A and B 
can be deformed continuously into the same s-dimensional cycle. I t 
is trivial tha t ~ is reflexive and symmetric and hence * defines a 
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homomorphic image J oi G which is obviously a topological invari­
ant of K. Clearly, if A *B, these two cycles are homologous in the 
sense of topology and consequently the s-dimensional homology group 
of K is a homomorghic image of / . Whenever for a complex the topo­
logical relation of homology coincides with the relation *, we are in 
the advantageous position of being able to define homology solely 
by notions which refer to continuous deformations. In this connec­
tion, it is interesting to observe that the well known one-dimensional 
cycle A of the double torus, which is homologous to zero but can not 
be deformed continuously into a point, nevertheless satisfies -4*0. 
(0 is the zero-cycle.) 

3. Algebraic systems. Returning to §1, let A=tiiW^+ • • • 
•^mhWt? be a d-dimensional cycle of an irreducible algebraic variety 
Vid). We denote by d* the degree of the irreducible variety W!f\ 
that is, the maximum number of points of intersection which 
can occur when W® is intersected with a linear, (n-~ s) -dimen­
sional subspace L(n~9) of the projective space P (n), where neither 
Wis)CUn-*> nor 2>-*>CWls). The rational integer d = n1d1+ • • • 
+tihdh is called the degree of A. It was proved in [2] that, for fixed 
s and d, there exists an algebraic correspondence N from an 
algebraic variety II onto F(d) which establishes a (l-l)-correspond-
ence between the points of II and all the effective cycles of dimension 
5 and degree d of F(d); II and N depend of course on 5 and d. Pre­
cisely, II is a subvariety of some projective space P(<) described by 
coordinates y0, • • • , yt\ that is, the forms which determine II are 
forms in the variables y0, • • • , yt\ t depends also on the choice of 5 
and d and II may be reducible. N is determined by a finite set of 
forms ki(x; y), • • • , ka(x; y) (with complex coefficients) which are 
homogeneous separately in Xo, • • • , xn and 3>o, • • • , y«. These forms 
are such that if (rç0, •••>*?*) is a point of II and 2V(rjoi •••»*?*) 
= wiHPf)+ • • • +nhW£\ the algebraic variety W f ^ • • • VWJ? is 
determined by the equations ki(x; rj) =0, • • • , ka{x\ rj) =0. The posi­
tive multiplicities tii, • • • , tth can be defined conveniently by means 
of the "associated forms" of [2] and hence their definition does not 
require any theory of "specialization." 

The collection of effective cycles which corresponds under N to an 
algebraic subvariety fl of II is called an algebraic system. Dimension, 
irreducibility, and components of an algebraic system 5 are defined 
in terms of its "parameter variety Q." 

In general, an algebraic correspondence / from a variety VQ onto 
V{d) is a correspondence defined by means of a finite set of doubly 
homogeneous forms, just as N was defined by the forms ki(x; y). 
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The points of V0 are transformed by / into effective cycles of V(d) ; 
and, if all these cycles have the same dimension and degree, they con­
stitute an algebraic system. This is usually the easiest way to check 
whether a given collection of cycles is an algebraic system. If Vo is 
also irreducible, J is called a birational transformation if the cor­
respondence is a (1-1)-point transformation except a t most on 
proper subvarieties of V0 and Vid). We say then that Vo and V{d) are 
birational models of one another. A large part of algebraic geometry 
consists of searching for birational invariants, that is, invariants of 
the variety under consideration which do not change when the 
variety is submitted to birational transformations. Dimension is a 
birational invariant. If Î2 is the parameter variety of an algebraic 
system S and / is an algebraic correspondence from some other 
algebraic variety Q* onto 0 which is a (l-l)-point transformation 
without exception, we can clearly also consider Q* as a parameter 
variety of S with N replaced by NJ. 

EXAMPLES 3.1. The points of V(d), tha t is, 5 = 0, 3 = 1, constitute 
an irreducible algebraic system of dimension d with V{d) as parameter 
variety. The point groups of arbitrary degree 3 (those for which 
5 = 0 and 3 is arbitrary) constitute a (dd)-dimensional, irreducible 
algebraic system with the product V<d) X • • • X Vid) of V(d) with itself 
3 times as parameter variety. The straight lines on an irreducible 
quadratic surface F (2 ) in 3-space (here 5 = 3 = 1) constitute a reducible 
algebraic system with two irreducible 1-dimensional components, 
namely the two pencils of lines on V(2); observe that these pencils 
have no element in common. Choose F(3) =P ( 3 ) , that is, all of 3-space. 
When 5 = 3 = 1, we obtain again the straight lines, and it is well 
known tha t they constitute an irreducible 4-dimensional algebraic 
system whose parameter variety Q(4) arises from the quadratic rela­
tions among the Plücker coordinates. Let us consider the 2nd de­
gree curves of P ( 3 ) ; then 5 = 1, 3 ==2. We have in the first place the 
pairs of lines, and they constitute an irreducible 8-dimensional sys­
tem with î2(4)Xfi(4) as parameter variety. Secondly, we have all 
conies. The conies which lie in a fixed plane of P ( 3 ) form an irreducible 
5-dimensional system and hence the conies of P ( 3 ) constitute an 
8-dimensional, irreducible system. Consequently for 5 = 1, 3 = 2, we 
obtain a reducible algebraic system with two irreducible 8-dimen­
sional components ; observe that these components have a nonempty 
intersection, namely the 7-dimensional algebraic system consisting of 
the pairs of intersecting lines. I t may happen that II consists of only a 
finite number of points, even when s<d. For example, when F ( 2 ) is 
a nonsingular cubic surface in P ( 3 ) , II for 5 = 3 = 1 consists of 27 points. 
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Warning. Let 0 be the irreducible parameter variety of an irre­
ducible algebraic system 5. If A\9 A2G.S and Q\, Q2 are the points of 
0 which correspond respectively to A\ and Ai, we can join Q\ and Q2 
by an arc which lies completely on 0. We should not conclude from 
this that necessarily A% can be continuously deformed into A 2. For 
example, if S is the irreducible 8-dimensional system consisting of all 
pairs of lines of P(3) and Ai is a pair of intersecting lines and A2 is a 
pair of not intersecting lines, Ai can not be deformed continuously 
into Az\ of course, in this case it is still possible to deform <42 continu­
ously into Ai. 

Finally, we observe that irreducible algebraic systems satisfy both 
the ascending and the descending chain conditions. This result fol­
lows from the fact that the irreducible systems, belonging to either 
an increasing or a descending chain, can all be considered as irre­
ducible subvarieties of the fixed variety II which comprises all effec­
tive cycles of the dimension and the degree under consideration. 

4. Algebraic equivalence. Consider the cycle group C8 for some 
fixed dimension OrgsSd of our ^-dimensional irreducible algebraic 
variety Vid). For two effective cycles JEi, E2ÇzC8 we define that 
E i « £ 2 if they belong to the same irreducible algebraic system; £x 

and E2 then have the same degree. The relation « is trivially re­
flexive and symmetric, and it is easily seen to be additive. For, if 
Ei and E2 belong to an irreducible algebraic system with parameter 
variety Qi, and if Ez and Ei belong to an irreducible algebraic system 
with parameter variety £22, then Ei+Ez and E2+-E4 belong to the 
necessarily irreducible algebraic system whose parameter variety is 
the product Q1XÖ2. We conclude from §2 that we obtain a homo-
morphic image of C8 by defining that A | 111 B if A and B are any two 
elements of C8 for which there exists an ZGC« such that A+X and 
B+X are effective and A+X^B+X; clearly A and B must then 
have the same degree. The equivalence relation 1111 is called algebraic 
equivalence. The relation « was obtained from the covering U of the 
set of effective cycles of C8 whose elements are the irreducible alge­
braic systems. Since irreducible algebraic systems satisfy the ascend­
ing chain condition, U is inductive; M (see §2) consists of the ir­
reducible components of the different algebraic systems which com­
prise all effective s-dimensional cycles of fixed degree d. (See §3. We 
have one such system for each d = 1, 2, • • • . ) The sets of M may not 
be mutually exclusive, as the 2nd degree curves of P(3) demonstrate 
(see examples 3.1), and consequently « and |||| may not coincide for 
the effective cycles of C8. For example, choosing F(d)==P(3), a non-
singular conic A and a pair of not intersecting lines B are in the rela-
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tion HU but not in the relation « . (Again, A can not be deformed 
continuously into J3, but now A and B can both be deformed continu­
ously into the same pair of intersecting lines. Considerations of this 
sort gave rise to example 2.1.) In spite of the warning of §3, when 
studying algebraic equivalence in C«, we can expect to be dealing 
with questions closely tied up with the homology relation of the 
2s-dimensional cycles of 2£(2d). When d = 2, this is exactly the case as 
we will now explain. 

Let F(2) be an irreducible algebraic surface in 3-dimensional space 
whose complex i£(4) can be considered as homogeneous; this means 
that every point of i£(4) is the interior of a 4-cell. Every surface has a 
birational model of this type. This follows from the classical result 
that every surface has a birational model without singularities in 
5-dimensional projective space and hence one with at most so-called 
"ordinary singularities" in 3-dimensional space. For our 2£<4), the 
Poincaré duality relations are now valid and hence, if &o, h> 62, &3, &4 
are its Betti numbers and o*o, Cu cr2, <r% its torsion coefficients, ôo = &4 
= 1, ôi = &3» o*o = (T3 = 0, cri = <r2. In order to investigate b% and a2l we 
study G under algebraic equivalence. It was proved by Lefschetz 
(see [3]) that if A, BÇ£Ci> then A \\\\ B if and only if their 2-dimen-
sional images in i£(4) are homologous. Hence the homomorphic image 
Hi of G which UU defines is isomorphic to a subgroup of the 2-dimen-
sional homology group of i£(4). Since this homology group has a finite 
number of generators with respect to the integers, so does Hi; and 
consequently Hi is a direct sum Hi^T@Bt where T consists of all 
the elements of Hi which have a nonzero order. We should expect 
that T is isomorphic with a subgroup of the 2-dimensional torsion 
group of 2£(4) but, as is proved in [3], T actually is isomorphic with 
that torsion group itself. Hence, the minimum number of generators 
of T is the algebro-geometric definition of 0*1=0*2. B is indeed iso­
morphic with only a subgroup of the 2-dimensional Betti group of 
i£(4) and hence, if p denotes the maximum number of linearly inde­
pendent elements of J8, p^&2. A birational transformation which 
either produces or loses exceptional curves is not a topological 
transformation, and hence topological invariants may not be bira­
tional invariants. Indeed, neither p nor 62 are birational invariants, 
but both numbers change by the amount ei~ e2 if the transformation 
produces ei exceptional curves and loses e2 such curves. It follows that 
&2~P=Po is a birational invariant of F(2). In the transcendental 
theory of algebraic surfaces, p occurs in the study of the logarithmic 
singularities of the simple integrals of the third kind of F(2), while 
the birational invariance of po also follows from the fact that F(2) 
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possesses exactly po proper double integrals of the second kind which 
are linearly independent modulo the improper integrals. Every bira-
tional transformation can be decomposed into a finite number of 
birational transformations, each one of which produces or loses 
only exceptional curves of the first kind. Since such curves can not 
belong to T (the "virtual degree" of an exceptional curve of the first 
kind is — 1 and of a curve of T is 0), 0-2 = CTI is also a birational in­
variant of F ( 2 ) . 

EXAMPLES 4.1. If F (2 ) is a plane, all effective, one-dimensional 
cycles of degree d form an irreducible algebraic system of dimension 
<5(3+3)/2, parametrized by the projective space whose coordinates 
are the coefficients of the forms k(x0l xi, x2) of degree 5. Hence if A 
is a straight line of F(2) all these cycles are algebraically equivalent 
to dA. Since every cycle is the difference of two effective cycles, 
every cycle is algebraically equivalent to nA for some whole num­
ber n. It follows that p = l and that <7,i = cT2 = 0. A surface is called 
rational if it can be transformed birationally into a plane. Hence, 
the torsion coefficients of rational surfaces are always zero. Let 
F(2) be a nonsingular quadric. If we project V{2) on a plane from 
a point Q on F(2) as projection center, in the resulting birational 
transformation the two straight lines of F (2 ) which pass through Q 
go over into points and Q itself goes over in a straight line. Hence, 
F (2 ) is a rational surface, and e\ = 1, e2 = 2 ; consequently p + 1 — 2 = 1, 
tha t is, p = 2. Two straight lines A, B of F (2) which intersect are not 
algebraically equivalent and hence every one-dimensional cycle of 
Vi2) is algebraically equivalent to niA+nzB. Surfaces with nonzero 
torsion are the sixth degree surfaces whose ordinary singularities form 
the six edges of a tetrahedron. These surfaces, which consequently 
are never rational, are due to Enriques. 

I t is believed that not only the C\ of F (2 ) has a finite number of 
generators with respect to | | | | , but that this is true for every C8 of 
every F ( d ) with respect to any groundfield of characteristic zero. 
This conjecture has been proved for s = d— 1 and the complex num­
bers as groundfield by means of transcendental and topological 
methods. Beyond this case, the conjecture has been proved only for 
special types of varieties. Even when d = 2, we can not prove the con­
jecture when the groundfield is not the field of complex numbers.1 

5. Linear series. In the theory of linear equivalence, arbitrary ir-

1 A proof for the case s =d — 1 and arbitrary groundfield is sketched by A. Néron in 
La théorie de la base pour les diviseurs sur les variétés algébriques, "Deuxième Colloque 
de Géométrie Algébrique," Liège, 1952, pp. 119-126. 
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reducible algebraic systems are replaced by the special irreducible 
algebraic systems which are called linear series. So, let us study them 
first. 

Consider a form k(x0> • • • , xn) of positive degree which is such 
that the hypersurface G defined by k(x) = 0 does not contain our V(d\ 
The intersection V^d)C\G is then the union of a finite number 
of irreducible, (^—1)-dimensional subvarieties of F (d ) , say F(d)P\G 
= w[d~l)KJ • • • \JW}?~1\ I t is proved in [4] that the intuitive inter­
section multiplicities which a geometer wants to associate with the 
intersection components Wiamml\ • • • , Wj?"^ can be defined ideal-
theoretically as follows. Let p be the prime ideal which consists of all 
forms which vanish everywhere on V(d). In a decomposition of the 
ideal (p, k(x)) into largest primary ideals, exactly h isolated primary 
components occur, say qi, • • • , (\h. The associated prime ideal pt- of q* 
defines a variety W^"^, and the intersection multiplicity Ui of 
Wid~l) as a component of F (d)P\G is the length of the primary ideal 
q*, i = l , • • • , h. I t is well known that lengths of primary ideals do 
not generally give the correct multiplicities in intersection theory, 
but in our simple case, where a variety is intersected with a hyper­
surface, the length can always be used. From now on we consider 
F ( d )HG as the effective (d—1)-dimensional cycle niWid~l) + • • • 
+nhWJid~1\ If the degrees of V{d) and G are respectively a and /3 (it 
is easy to show that /3 is the degree of the form k(x0, • • • , xn)), the 
degree of the cycle Vid)r\G is a/3. For this reason, when k(xo, • • • , xn) 
is a nonzero constant and hence G the empty set, we consider 
F (d)P\G as the zero cycle. 

EXAMPLE 5.1. Let F (2 ) be an irreducible quadratic cone in 3-space 
and A and B two distinct straight lines on F ( 2 ) . The plane containing 
A and B is denoted by Gi, and the tangent plane of the cone which 
contains A by G%. Then V^^G^IA + IB and V™f^G*~2A; the 
multiplicity 2 arises from the fact that if we deform G% into another 
plane through the vertex of the cone, F(2)P\G2 splits up into two dis­
tinct straight lines. 

Now let èo(#o, • • • , #n), • • • , kr(xo, - - • , xn) be r forms which 
all have the same degree j3 and which are linearly independent 
modulo V(d). If X0, • • • , Xr are complex numbers, not all zero, 
X0feo(#) + • • • +\kr(x) is also a form of degree /3 and the condition 
of linear independence states exactly that the hypersurface 
G(Xo, • • • , Xr) with equation Xofeo(#)+ • • • +\kr(x)=0 does not 
contain Vid). Hence, the intersection cycle F(d)P\G(Xo, • • • , Xr) is a 
well defined effective cycle of degree a/3 of Cd-x (a is again the degree 
of V^d)). The effective cycles, which in this way correspond to the 
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points of the r-dimensional projective space A(r) of (r + l)-tuples 
(Xo, • • • , Xr), are called a linear series gr of dimension r and degree 
aj3. If it is possible to subtract from all the cycles of £# a fixed effec­
tive (d —1) -dimensional cycle of degree j80 so that all the remaining 
cycles are still effective, we consider also these remaining cycles as a 
linear series g^ -^ of dimension r and degree aj8 —/30, parametrized by 
the same projective space A(r) as above. 

It is clear that an r-dimensional linear series gr
t is an irreducible, 

r-dimensional algebraic system consisting of (d— 1) -dimensional effec­
tive cycles of degree t for whose parameter variety we can choose 
the above projective space A(r). It follows that r can not exceed the 
dimension of the algebraic variety II which parametrizes all the effec­
tive (d — 1)-dimensional cycles of degree /. For example, if d = l , gr

t 

consists of pointgroups of degree tf and we have seen in examples 
3.1 that II then has dimension /. Hence, r g/, if gl is a linear series on 
a curve. 

EXAMPLE 5.2. Let F(2) again be an irreducible quadratic cone in 
3-space P(3) and A and B two distinct lines on F(2). All quadrics of 
po) which contain both A and B constitute a linear system L of 
dimension 4 in which occur three quadrics which are linearly inde­
pendent modulo our F(2). Hence the quadrics of L cut out on the 
cone a linear series gj, consisting of A+B+Di, where Di runs 
through all the nonsingular and singular conies on the cone. This 
gl has A + 5 as fixed cycle. Consequently the sets of effective cycles 
A+Di, B+Diy Di are all considered as 3-dimensional linear series of 
degrees respectively 3, 3, 2; only the last linear series has no fixed 
cycle. 

Let p(x0, - • • , xn), q(xo, • • • , xn) be two forms of the same de­
gree, where the hypersurface G(q) with equation q(x)—0 does not 
contain F(d). The quotient p(x)/q(x) then determines a function on 
yw which is well defined there except for the points of the cycle 
V{d)r\G(q). If we add and multiply these functions as functions on 
F(d), we obtain a field F which is called the field of rational f unctions of 
Vid). If also the hypersurface G(p) with equation p(x)~Q does not 
contain V(d\ the function is a nonzero element of F and the well de­
fined (d-l)-dimensional cycle (V^r\G(p))-(V^r\G(q)) of degree 
zero is then called the cycle D(<t>) of the rational function </> de­
termined by p(x)/q(x). It is easy to see that the mapping 0—>D(<t>) is 
a homomorphism from the multiplicative group of F into Cd~i, and 
hence these cycles D(<t>) form a subgroup R of Cd-i. Two irreducible 
varieties can be mapped onto one another by means of a biratioiial 
transformation if and only if their fields of rational functions are 
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isomorphic under an isomorphism which leaves the constant functions 
pointwise fixed. Small wonder then that if we study Cd-i under the 
equivalence relation imposed upon it by i?, and this relation will turn 
out to be linear equivalence, we shall discover further birational in­
variants. 

Let Ei and E2 be two effective cycles which belong to the same 
linear series, cut out on F(<f) by the linearly independent forms 
ko(x), • • • , kr(x); say E\ and £2 arise respectively from the hyper-
surfaces Gi, G2 with equations Xofeo(tf) + • • • +\rkr(x) = 0 and fjL0ko(x) 
+ • • • +lJ>rkr(x) = 0. Denoting by Eo the fixed divisor which may 
have been subtracted from the total intersections, Ei==(F(d)P\Gi) 
- E 0 and E2^(V^r\G2)-Eo. Hence, E i - E 2 = £>(<£), where <t> is the 
nonzero rational function of V{d) determined by the quotient Xo&o(#) 
+ • • • +\rkr(x)/fAoko(x)+ • • • +firkr(x). We prove just as easily 
that all cycles of R can be obtained in this way; that is, a cycle belongs 
to R if and only if it is the difference of two effective cycles which belong 
to the same linear series. This statement establishes the connection 
between linear series and rational functions. 

6. Linear equivalence. This type of equivalence is restricted to 
the group Cd-i of our Vid). For two effective cycles Ei, E2£Cd_i we 
define that E i « £ 2 if they belong to the same linear series, that is, if 
Ei—E2 belongs to the subgroup R of Cd_i. (See the previous section.) 
We conclude immediately that the relation « is reflexive, symmetric, 
additive, subtractive, and transitive. It follows from §2 that we obtain 
a homomorphic image of Cd-i with kernel R by defining that A^B 
if A and B are any two elements of Cd-i for which there exists an 
XGCd-i such that A +X and B+X are effective and A +X~B+X. 
Clearly, if A s 5 , these cycles have the same degree and the relations 
25 and « coincide on the set of effective cycles. Observe that if 
A s 5 , then certainly A |||| B. 

The relation «* was obtained from the covering U of the set of 
effective cycles of Cd-i whose elements are the linear series of V(dK 
Since linear series are irreducible algebraic systems, U is again induc­
tive. The elements of M (see §2) are now called complete linear series. 
In order to show that two distinct complete linear series are mutually 
exclusive, we must prove that when two linear series have a cycle in 
common, they are contained in the same linear series. (See statement 
2.2.) This fact, whose analogue we have seen to be false for algebraic 
equivalence, does not follow trivially from anything which has been 
said in this exposition; a simple proof of it can be found in §17 of 
[5]. Accepting this fact as established, we see that every effective, 
(d —1) -dimensional cycle E is contained in a unique complete linear 
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series \E\ which consists of all effective cycles, linearly equivalent to 
£ ; exactly the same remark can be made concerning any linear series 
gr and the unique complete linear series |g r | to which all cycles of gr 

belong. If \gT\ has dimension r1, the deficiency 8 of gr is defined as 
8 = fi — r ; clearly 6^0, and S = 0 if and only if gr is complete. 

Let Wid^x) be an irreducible, (d—1)-dimensional subvariety of 
V{d) and let us choose £ = ppw-i). Suppose that | £ | has dimension r 
and is cut out on V(d) by the hypersurfaces of the system Xofeo(#) 
+ • • • +Xr^r(^)=0, where of course an appropriate fixed, effective 
cycle E0 may have been subtracted from the total intersection cycles. 
Since W{d~~l) is irreducible, our \E\ has no fixed cycle, unless r = 0 
in which case | E | consists of W^v alone. (This happens for example 
when Wa) is one of the 27 straight lines on a cubic surface without 
singularities.) We make the special assumption that there does not 
exist a (d — 2)-dimensional subvariety of V(d) which belongs to all 
cycles of | E | ; this clearly is stronger than assuming that r>0. 
Under this assumption, the linear series gr"1

f cut out on E by the 
cycles of | E | , can be defined as follows, avoiding all questions of 
intersection theory we have not dealt with already. Among the above 
forms k0(x), • • • i kr(x) there are precisely r forms, say fe0(x), • • • , 
fer_i(x), which are linearly independent modulo Wid"l). The g1"-1 cut 
out on £ by \E\ is exactly the linear series without fixed cycle cut out 
on W^-v by the hypersurfaces \0k0(x) + • • • +Xr_i&r~i(x) =0. (This 
may of course necessitate subtracting a fixed, effective, (d-^-dimen­
sional cycle of W^"^ from the total intersection divisors of W{d~~l) 

with the hypersurfaces X0feo(#) + • • • +\r-ikr-i(x) = 0.) The fact that 
| E | is complete does not imply that g*""1 is complete; on the contrary, 
the deficiency of gr~~l may very well be positive. 

EXAMPLES 6.1. F(3) is all of 3-space and W(2) is one of its planes. 
| JS| now consists of all planes of 3-space and hence r = 3. The g2 

consists of all straight lines of Wi2) and hence is complete. Now let 
V(2) be all of 2-space and W(1) an irreducible, third degree curve in 
F(2) with a double point. | E | consists of all third degree curves of 
F(2) and hence r = 9. The g* clearly has degree 9; that is, it is a g*. 
Since our Wœ is a rational curve, this gl is not complete, but has de­
ficiency 8 = 1. Observe that, if we had chosen for our W(1) an irre­
ducible third degree curve without singularities, the corresponding 
gl would have been complete. 

REMARK. Whenever W(8) is an irreducible, s-dimensional sub-
variety of V(d) and g a linear series of V(d\ such that there does not 
exist an (5 —1)-dimensional subvariety of W{a) which belongs to all 
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cycles of g, the linear series of W(8) which results from intersecting 
W(9) with the cyles of g can be defined as above. 

Let us now return to the case d = 2. We assume again that F (2 ) is 
an irreducible surface of 3-space with only ordinary singularities 
whose complex j£(4) is homogeneous. We shall call an irreducible 
curve W™=E of V™ «general" if: 

(1) There exists on F (2 ) no point which belongs to all cycles of 
\E\. 

(2) A tangent plane of F (2 ) contains a t most one simple tangent 
of W™. 

The first condition guarantees that the linear series gr
t~

l of Wa\ 
obtained by intersecting W{1) with the cycles of | E | , can be defined 
as above. This g p 1 is called the characteristic series of W^l) and its 
degree t the virtual degree of Wa). The second condition states that 
on every two-dimensional branch of F (2 ) our curve W{1) behaves as 
a nonsingular curve. F (2 ) has general curves galore. For example, the 
intersection of F (2 ) with a hypersurface will almost always be a gen­
eral curve. We are using here the term "general" as is customary in 
algebraic geometry. Precisely, if d is large enough, all one-dimen­
sional cycles of degree d are general curves, except for perhaps those 
which correspond to the points of a subvariety 0 of the variety II 
which parametrizes all one-dimensional cycles of degree d; the im­
portant thing is that the dimension of II exceeds the dimension of 12. 
(The dimension of a reducible variety is defined as the largest dimen­
sion which occurs among its irreducible components.) 

Castelnuovo has proved in [6] that the deficiencies of the char­
acteristic series of the general curves of F (2 ) reach a finite maximum 
on F ( 2 ) . This maximum is usually denoted by q and is called the 
irregularity of the surface; when g = 0, the surface is called regular, 
otherwise irregular. The Betti number 61 = 63 of X (4) is equal to 2q 
(see [3]), and hence we have now found an algebro-geometric defini­
tion for this Betti number. We see that the connected, orientable, 
closed, homogeneous, four-dimensional complexes, which arise from 
algebraic surfaces, are not the most general complexes of this type; a 
restriction on their topology is that b\ is even. Since q is the maximum 
number of simple integrals of the first kind of F (2 ) which are linearly 
independent modulo the constants, q is a birational invariant of 
F ( 2 ) . Observe from examples 6.1 tha t the second condition in the 
definition of a general curve can not be left out, when quoting the 
Castelnuovo theorem; namely, for the plane, g = 0 but, for the cubic 
curve with double point, the deficiency of its characteristic series is 1. 
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The following birational invariants also belong in the theory of 
linear equivalence. The singular points of V(2) fill up an algebraic 
curve. If D(i\ • • • , Pj^are the irreducible components of this curve, 
we denote by D the one-dimensional cycle D^+ • • • +D®; if V(2) 

has no singularities, we consider D as the zero cycle. The surfaces of 
3-space which contain D, that is, which contain D(i\ • • • , D%\ are 
called the adjoints of V{2). If m is the degree of F(2), the maximum 
number of linearly independent adjoints of degree m—4 is a bira­
tional invariant of F(2), called the geometric genus pQ of F(2). Hence, 
the adjoints of degree w — 4, if there are any, cut out on F(2) a linear 
series of dimension pQ — 1 which contains at least Z)asa fixed cycle; 
the (pg — 1) -dimensional linear series which is obtained by subtracting 
D from all the total intersection cycles is called the impure canonical 
system K of F(2). Every linear series of V(2\ obtained by intersecting 
F(2) with all its adjoints of a fixed degree and subtracting D from the 
total intersection cycles, is a complete linear series; in particular, K 
is complete. The birational invariance of pg follows from the fact 
that the maximum number of double integrals of the first kind of 
Vi2\ which are linearly independent modulo the constants, is exactly 
pg. The birational invariant pg — q is called the arithmetic genus pa of 
V{2) ; pa may very well be negative. 

It is usually not difficult to compute p0 directly from its definition. 
We now show how pa, and hence g, can be computed. The planes of 
3-space constitute an irreducible algebraic system of dimension 3. 
Except for at most a sub variety of planes (that is, an algebraic sys­
tem of planes) of dimension 2, a plane intersects Vr(2) in an irre­
ducible curve. The genus of such an irreducible plane curve of degree 
m is of course at most (m — 1) (m — 2)/2. We denote by p the maximum 
genus of the irreducible plane curves of V(2) and by a the maximum 
number of linearly independent adjoints of degree m —3 of F(2). It 
follows from a theorem of Picard (see [7, vol. 2, p. 437]) that 
pa^a-p. 

EXAMPLES 6.2. Let V(2) be a plane. Then w = l and hence there 
exist no adjoints of degree m — 4 or m — 3; hence pg~a~Q. Intersec­
tion of F(2) with a plane gives rise to a straight line; hence £ = 0, 
which shows that £o = g = 0. Hence, the three birational invariants 
<Z> pgy Pa are also zero for all rational surfaces. An example of a non-
rational surface with q~pg~pa~0 is furnished by the sixth degree 
surfaces of Enriques. (See examples 4.1.) In that case, m—4 = 2; and, 
since there exist no quadrics which contain all six edges of a tetra­
hedron, pg~0. A general plane intersects Vm in a 6th degree curve 
with 6 ordinary double points; hence, £ = 4. The four faces of the 
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tetrahedron, taken three at a time, furnish four linearly independent 
adjoints of degree 3, from which it follows that # = 4 and hence that 
Pa^q — Q- All surfaces Vi2) without singularities are regular. Thus, the 
number of linearly independent surfaces of degree m—4 is 
(m — 1) (m — 2) (m — 3)/6 » pg ; in the same way, a = 1 m(m — 1) (m — 2)/6. 
A general plane intersects F(2) in a nonsingular curve of degree m\ 
hence £=*(w —l)(w~2)/2. It follows that£ a = a—£ = (m — l)(w —2) 
• (m —3)/6 and hence that g^O. Ruled surfaces never have adjoints 
of degree w—-4 or m— 3, while p can be arbitrarily large. Hence, 
these surfaces furnish examples of irregular surfaces, as now £* — (), 
Pa^-p, q**p. 

The only topological invariant of i£(4) for which we have not yet 
given an algebro-geometric definition is the second Betti number 
ô2. We have seen that the straight lines of 3-space form a 4-dimen-
sional irreducible algebraic system. The number of tangent planes of 
y(2> which pass through a straight line of 3-space is always the same, 
except for at most a 3-dimensional algebraic system of lines. This 
number is called the class c of F(2). The Euler characteristic bo — bi 
+&2 — &3+&4 of i£(4) turns out to be c—4£ — w+4, where p has the 
same meaning as above; this follows from a formula of Alexander 
(see Rendiconti dei Lincei, August 1914, and [5, p. 96]). Hence, 
2 — 4q+b2~c — 4:p—tn+4:, which shows that 62 = c—4£ —w+4<?+2. 
This formula can be considered as an algebro-geometric definition of 
&2 and enables us to compute b2 easily. 

EXAMPLES 6.3. If F(2) is a plane, c~p-q~0 and tn==l; hence, 
62 = 1. Consequently, po — 0 and since po is a birational invariant (see 
§4), po = 0 for all rational surfaces. We conclude for example that for 
the nonsingular quadrics, 62 = 2. 

We have not attempted to define all known birational invariants 
of surfaces. Equivalence relations have further usage, besides dis­
covering and studying birational invariants. For example, the 
Riemann-Roch theorem for surfaces belongs properly in the theory of 
linear equivalence. Let W(1) be a general curve of genus p, and with 
characteristic series g[~\ Let i be the number of linearly inde­
pendent cycles of the impure canonical system K which contain 
W(1) as a component. Then the Riemann-Roch theorem asserts that 
r^t-p+pa-i+1. 

7. Rational equivalence. It is true that, using only the part of 
intersection theory which is based on the notion of length of a primary 
ideal, we have been able to define several of the invariants of alge­
braic surfaces and state some of their properties. This should not 
mislead the reader into thinking that the algebrogeometric theory of 
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surfaces can be developed without some thorough, general intersec­
tion theory. It is inconceivable that the assertions of the previous sections 
can be proved, using only intersection multiplicities which are based on 
the notion of length. 

Let us return to our irreducible variety V{d). If Ei, • • - , Eh are h 
effective, (d — 1)-dimensional cycles of F (d ) where l^h^d, it is part 
of the task of intersection theory to define the (d — h) -dimensional 
intersection cycle Ex Eh of Eu • • • , Eh. If Wid~h\ • • • , Wj?'» 
are the irreducible, (d — h)-dimensional components of E\ Eh 
and «i, • • • , nk their respective intersection multiplicities, the cycle 
Ei Eh is exactly nxW?-h) + • • • +nkW^n). I t is usually in­
tuitively evident what W[*~n\ • • • , Wj?~h\ nu • • • , nk are, but in­
tersection theory tries to give definitions for them which are ac­
ceptable both from the point of view of mathematical rigor and 
mathematical simplicity. Let us suppose that this has been done, 
that is, tha t the intersection cycle E\ Eh has been well defined. 

Consider h linear series Li, • • • , Lh of V(d\ l^h^d. Each cycle 
Ei of Li corresponds to a point of the parametrizing projective space 
Qi of Li, and hence to each point of the product space fiiX • • X&h 
we can associate the intersection cycle E\ E&. The effective, 
{d — h)-dimensional cycles, obtained in this way, form an irreducible 
algebraic system, parametrized by fliX • • X&h and called an ele­
mentary system of rational equivalence. When h = l, we obtain again 
the linear series and, as in the case of linear series, we allow subtrac­
tion of fixed cycles if they occur. For two effective, (d — ̂ -dimen­
sional cycles Ei, E2 we define that Ei~E2 if they belong to the same 
elementary system of rational equivalence. The binary relation ~ is 
reflexive and symmetric, but may not be additive. If it is not, we 
first go over to an additive relation « for the effective, (d — h)-
dimensional cycles by the procedure described in §2 ; the covering U 
now has as elements the elementary systems of rational equivalence. 
Then, by our standard method, we introduce an equivalence relation 
for the group Cd-h of (d — h) -dimensional cycles which gives rise to a 
homomorphic image of Cd~h- The relation for the cycles of Cd-n, 
obtained in this way, is called rational equivalence. Hence, two 
arbitrary cycles A, B(ECd-*h are rationally equivalent if there exists 
an XGCd-h such that A+X = En+ • • • +Elkl B+X = E2i+E22 

+ • • • +E2ky where the effective cycles Eu~E2i for i=l, • • • , k. 
Rationally equivalent cycles clearly have the same degree and are 
necessarily algebraically equivalent; if A = l, rational equivalence 
coincides with linear equivalence. 

The rational equivalence of pointgroups, that is, of O-dimensional 
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cycles, is used in the proofs of the theorems we stated for surfaces. 
Efforts to extend these theorems to varieties of arbitrary dimension 
lead to outstanding problems of algebraic geometry and in this work 
the rational equivalence for arbitrary Cd-n is used. 

8. How to get started in algebraic geometry. This section is meant 
for readers who want to learn algebraic geometry but have to do this 
studying by themselves. 

For most people, the easiest way to get into this field is prob­
ably through the so-called algebro-geometric method. This is the 
method whose main instruments come from projective geometry and 
modern algebra and which uses analysis and topology only as sec­
ondary tools; it is the method used in this exposition. 

First, then, some knowledge of projective geometry and modern 
algebra has to be acquired. When selecting one of the many books on 
projective geometry, choose one which treats this subject from the 
technical rather than from the axiomatic point of view. A book of 
about 150 to 200 pages which defines w-dimensional projective space 
in terms of (w + l)-tuples, discusses general properties of w-dimen-
sional space rather than special properties of the straight line, the 
plane, and 3-space, uses projective coordinates whenever they are 
convenient, and so on, is the sort of book best suited for the present 
purpose. As far as modern algebra is concerned, some knowledge of 
field extensions, valuation theory, and commutative ring theory 
should be obtained. I t is not necessary to study any of these subjects 
extensively to get started in algebraic geometry. For example, §§6 
through 41, 50 through 52, and chapters 8, 10, 11, 12, 13 of the 
English edition of van der Waerden's Modern algebra should be more 
than enough. 

As a first book on algebraic geometry, try Algebraic geometry by 
S. Lefschetz which is announced as No. 18 of the Princeton Mathe­
matical Series, to be published in June, 1953. This book makes 
tough, but rewarding, reading and is particularly strong in giving the 
reader an insight into the transcendental methods of curve and sur­
face theory, although only the algebro-geometric method is used. 
When the reading gets too tough, the very clearly written Algebraic 
curves by R. J. Walker may be of help; this book is more elementary 
than the first and treats many of its subjects. Next, it is advisable to 
study volume 2 of Methods of algebraic geometry by W. V. D. Hodge 
and D. Pedoe. Here we find a good treatment of algebraic systems, 
algebraic equivalence, intersection theory, and so on. After these 
two books have been studied, the student ought to be willing to relax 
his mathematical rigor somewhat, so tha t he can get an insight into 
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the over-all accomplishments of classical algebraic geometry and 
acquaint himself with the outstanding problems of present day alge­
braic geometry. There is no doubt that as yet this can not be done if 
we insist that every statement be proved with complete mathe­
matical rigor, as we understand that term today. Excellent books for 
this purpose are reference [5] of this exposition and further litera­
ture given there. 

Once the above material has been absorbed, the student should be 
ready to specialize in whatever direction he chooses. Besides the alge-
bro-geometric direction, there are the algebraic direction and the 
transcendental direction. 

If the student wants to go on in the algebro-geometric direction, 
he should read the papers by O. Zariski in order to get an insight into 
how valuation theory is used in the study of varieties of arbitrary 
dimension. 

The algebraic direction is the one where as little projective geom­
etry as possible is used, where the groundfield is made as arbitrary 
as possible, and where one tries to use only algebra as his tool. Al­
though the distinction between the algebro-geometric method and 
the algebraic method is necessarily vague, it is safe to say that the 
latter method is the one which is most important for algebraic 
number theory. The student who wants to pursue the strictly alge­
braic direction should begin by learning the abstract theory of alge­
braic function fields of one variable. An excellent account of this 
theory can be found in Algebraic numbers and algebraic f unctions by 
E. Artin; this is a set of lecture notes, mimeographed in 1950-1951 
by New York University. The student should then study Founda­
tions of algebraic geometry by A. Weil, published as vol. 29 of the 
American Mathematical Society Colloquium Publications. 

The transcendental direction is the one which is based on analysis 
and topology. There one can get a start by studying in references 
[3] and [7] of this exposition. As a preparation for [7], the Traité 
d'Analyse by Ê. Picard is helpful. Except for a 1934-1935 mimeo­
graphed set of Princeton lectures, given by S. Lefschetz and written 
by N. E. Steenrod and H. Wallman, the author is not able to men­
tion an efficient preparation for [3]. 
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