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Consider the problem of computing the numerical value f(x) of 
some function ƒ corresponding to a particular value of x. If x is a 
physical quantity whose value is known only from measurement, 
then one has available not x itself but some approximation x*. If x 
is a mathematical constant, one may again be forced to replace x by 
some approximate value x*. This is to be expected at least when x 
is irrational, and is often true when x is rational. For these or other 
reasons, though f(x) is desired, one may have to accept some f(x*) 
instead. 

Unless the function ƒ is rational, one will generally be forced to 
represent ƒ approximately by a truncated Taylor series, or an 
orthogonal series, or in some other fashion. In general, therefore, one 
does not strictly compute even ƒ(x*), but rather some ƒ<>(#*), where 
fa represents a function which approximates ƒ over some range con
taining x*. 

Suppose that fa is defined by a finite sequence of elementary arith
metic operations, and that the computations are digital. In general 
the result of a division is not representable exactly by a terminating 
decimal. The same statement holds, of course, if one were using any 
fixed base. The result of multiplying two numbers, each expressible 
by n digits, will in general require 2n digits for its representation and 
further multiplications would increase the number of digits in propor
tion. Hence for either a product, or a quotient, one will in general 
replace the true result by an approximation obtained by truncating 
the sequence of digits and perhaps adjusting by some rule the last 
one retained. Hence one does not, in general, end up even with/ a(x*), 
but rather with some ƒ*(#*), in which true products and quotients 
are replaced by pseudo products and pseudo quotients, obtained ac
cording to rules that are determined in part by the nature of the 
facilities used for the computing. 

Thus one starts to compute f(x) and ends by computing some 
ƒ*(#*), thereby committing an error whose amount can be expressed 
as a sum of three independent components: 

ƒ(*) - ƒ*(**) = [ƒ(*) - ƒ(**) ] + [ƒ(**) - ƒ„(**) ] 
_ + [ƒ.(**) - ƒ*(**) ]. 
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Of these three components, the first will be called the propagated 
error, the second the residual error, and the third the generated error. 

If it is possible to assign limits to the error x—x*, then by standard 
methods one can estimate the propagated error. The propagated error 
is completely independent of computing techniques and devices and 
can be reduced only by improving the approximation x* to x. 

The nature of the facilities available to the computor will guide 
him in his selection of the approximation fa. So, too, will the require
ments of accuracy: if a linear approximation will suffice, there is no 
point in computing the quadratic term. But once fa has been de
termined, the residual error is also determined. It can be estimated 
by applying standard remainder formulas. 

There remains, however, the generated error. I t depends upon the 
facilities being used, and even upon quite subtle details of their ap
plication. This is the subject on which I wish to speak. 

Unfortunately, there is no well developed general theory of gen
erated error. For one thing the need did not become acute until the 
advent of automatic, high speed computing machinery. For another 
thing, the differences among machines now operating are such that 
each machine demands a theory all its own. Nevertheless, a few 
general principles can be stated, or at least illustrated and used as 
guides. This I shall at tempt to do, first by describing a specific com
puting system, and then analyzing certain particular computational 
sequences. 

In 1947, von Neumann and Goldstine gave an elaborate analysis 
of the errors generated in the course of inverting a matrix by Gaus
sian elimination. This is the first systematic treatment of generated 
error to appear in the literature. The computing system I shall pre
suppose is called the Oracle and is quite similar to theirs, but differs 
in a few respects. I shall assume that a register in the machine 
exhibits <r + l binary digits, ceo, ai, • • • , aay and that the machined 
arithmetic is designed with the assumption that these digits represent 
a number 

a = - aQ + ax-2-1 + • • • + a,-2-°. 

Any number so represented will be called a digital number, so that 
digital numbers satisfy 

- 1 ^ a < 1, 

and are integral multiples of 2~ff. The binary digit ce0 is called the sign 
digit, the others the precision digits. 

When multiplication is called for, the sign digit and the first <r 
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precision digits of the product will appear in one of the registers, and 
the remaining a precision digits will appear in the other. Normally 
one retains only the most significant part, and this will be called the 
simple pseudo product. If the factors are a and ô, the simple pseudo 
product will be designated (ab)*, A special order will yield ab+2~a~1, 
whose most significant part is the rounded pseudo product (ab)?. 
These pseudo products satisfy the relations 

(2) 0 ^ ab - (ab)* < 2e, - e ^ ab - (ab)* < e, 

where 

(3) e = 2-"-1 

is the unit rounding error. 
When multiplication is called for, and the pseudo product is to be 

sent to storage, then if a = b= —• 1, storage will receive — 1. Hence in 
planning a computation one must be sure that this case cannot arise, 
or else provide remedial steps to be taken in case it does. For all other 
combinations of a and 6, multiplication is legitimate. 

For division a/6, it is required that \a\ < | b\. Division can be per
formed with a digital, or with a of the form 

a = #i + #2-2-<r, 

where a,\ and a2 are digital and a 2 ^ 0 . In either case, following the 
division one register will exhibit a truncated pseudo quotient (a/b) * 
which satisfies 

0 ^ a/b - (a/b)* <2e, b> 0, 

0 < a/b - (a/by ^ 2e, b < 0. 

The other register will exhibit the remainder. 
If n is a small positive integer the direct division of n into a digital 

number a can be formed by forming 2~(ra/(2~<Tn). The somewhat 
more precise limits for the pseudo quotient are often useful: 

0 ^ a/n - (a/n)* S 2(« - l)e/n, 

2e/n ^ a/(-n) - [ a / ( - » ) ] * ^ 2e. 

Addition and subtraction propagate, but do not generate errors, 
unless the sum or difference falls outside the digital range. This would 
be considered a blunder and I shall assume it does not happen. 
Likewise I shall assume that any product ab<l1 and that for any 
quotient \a/b\ < 1 . 

In general a mathematical formulation does not by any means de-
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fine uniquely a computational procedure, and it is the computational 
procedure that determines the generated error. A particular ordered 
sequence of operations is called a routine, and the unambiguous 
prescription for such a sequence is a program. In planning the 
computation of a particular function, one wishes to program a rou
tine that will minimize the maximum possible generated error, or 
that will a t least hold the maximum possible generated error within 
tolerable bounds. This is not the only possible criterion, but it is the 
one that will be applied here. 

Consider to begin with the very simple problem of computing 
a I(be). To avoid tedious multiplicity of cases, assume all factors posi
tive, and assume, as usual, that any operation called for is legitimate. 

The computation, then, seems eminently reasonable. We have a 
choice, however, of doing two divisions in sequence, or of doing first 
a multiplication and then a division. Machine-wise, as many steps 
are required one way as the other. Suppose the multiplication is done 
first. We have 

a T a ~1* a a a [ ~ a " l * 

To ~ L(M*J = Te ~ "(fa)*" " ( W "~ L(6c)r*J 
a r _ a f a "1* 

= — — [(be)? - be] + . 
be(be)?lK (be)? I (be)? J 

The second difference on the right is the difference between a true 
quotient and a pseudo quotient, and lies between 0 and 2e. Consider, 
therefore, the first expression on the right. 

Disregarding the trivial case # = 0, which leads to a result that is 
strictly correct, the division could be legitimate with (be)? as small 
as 2_<r+1 = 4€ provided a=*2e. Since 

- e ^ be - (be)/ < e, 

therefore ab can be as small as 4e — e = 3e. This is assuming that the 
limits have been attained and we have 

a = 2e, (be)? = 4e, be = 3e. 

In this event, the first expression on the right becomes 

2e r . 1 
4e - 3e = — • 

3e-4e 6 
The computed quotient can be too small by 1/6, or 25% of the true 
quotient 2 /3 . 
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If be and (be)? differ in the other direction, the computed result 
can be too large by nearly 1/10, or again 25% of the true quotient 
which would, in this case, be 2/5. 

This is, of course, an extreme, but perfectly possible case. Since the 
error is certainly intolerable, let us consider the other routine of 
dping successive divisions. We have now 

ï-[(T)y-r-[f-(T)>(T)7«-[(T)y-T-
Again it is the first expression that requires consideration. We now 
observe immediately that if b and c are different, then it will make a 
difference in our result whether we first divide by &, as indicated, 
or first divide by c instead. Suppose we have somehow arranged it so 
that e^b, which gives the most favorable result. Then, since cb>a, 
necessarily 

c > a1'2. 

Again neglecting the trivial case a = 0, we can assume a ^ 2e and there
fore 

c > (2e)1'2. 

Hence we come out with the result that 

(6) O J5-[(T)*/'I< , ! , | , ," + !' 
This is considerably better, but even so only about half the figures are 
significant and we have assumed that c was known to be not less than 
b. 

The extremely unfavorable result of the first routine occurs when be 
is small. If be is not so small the result might be more satisfactory. 
Assuming again that e>b, we shall say that the first routine is to be 
preferred over the second unless 

a 1 
^ —, 

bc(be)? e 
or, since all factors are supposed positive, unless 

b g a/(bc)f. 

This is equivalent to saying that 

(7) b S [a/(bc)?]\ 
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The second inequality implies the first since the pseudo quotient 
cannot exceed the true quotient. Conversely, the pseudo quotient 
and b are both digital. Hence if b exceeds the pseudo quotient, it 
must do so by a t least as much as 2e, whereas the true and pseudo 
quotients differ by less than 2e. 

I t follows that if our pseudo quotient, obtained by following the 
first routine, is exceeded by both of the factors in the denominator, 
then we have made the best selection. If not, we should recompute, 
following the second routine. To show that the condition is not trivial, 
take a = 2-10, bc = 2~6. Then 

a/(bc)? = 2~4 

and condition (7) fails if b = c = 2~z, but is satisfied if & = 2~5, c = 2~1. 
If one does not know a priori enough about the magnitudes of the 

quantities involved to select the preferred routine, or at least to know 
that one routine or the other, even if not the preferred one, will yield 
a satisfactory result, then it is quite possible to program both routines 
and the selection of the better of the two results. The machine will 
then follow the first method, test the criterion, and recompute by the 
second method if the criterion fails. 

On the Oracle, the special feature permitting the direct use of a 
double precision dividend makes it possible to get a much better 
result and with less trouble. Suppose b^c. The discrimination is 
easily programmed. The machine division of a by b yields the partial 
quotient and the remainder, so that one can store the partial quotient 
and continue the division to obtain the next a digits of the quotient. 
Altogether, then, we have 2<r precision digits of the quotient a/b, 
which form a number (a/b)' satisfying 

0 g a/b - (a/by < 4e2. 

If one divides (a/b)f by c and denotes the result by (a/bc)*, the error 
can be written 

± - (SLY , ^ pi - (!)'] + <-• (±)'- (^Y. 
be \bcj lb Vft/J \bj \bcj 

Since 

be > a, c ^ b, 

it follows that 

c > a1'2 
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and except for the trivial case a = 0, 

a ^ 2e. 

Hence 

c > (2e)1'2. 

Hence 

(8) o g - - ^ - j < 2e[l + (2€)i/»]. 

The example I have just given is by no means artificial. Thus, 
iterated division is required in the formation of divided differences 
for purposes of interpolation, and the number of factors in the divisor 
is equal to the order of the divided difference. Let the divided differ
ences be formed according to the iterative scheme 

Mathematically, yo...i is a symmetric function of its arguments. 
However, if the digital number 3&...» is to be formed and utilized 
in the computation of the divided difference of next higher order, then 
it is clear from the foregoing discussion that the optimal arrange
ment will be that for which 

%0 < %1 < %2 < * * * 

or that for which the inequalities are reversed. Unfortunately, the 
formation of a double precision dividend is more costly, since the 
dividend is the difference of two quantities, and the difference of 
double precision numbers requires a fair amount of programming. 

I t is usual to indicate the limits of error by estimating the absolute 
value of the difference between the computed and the desired results. 
However, this may lead to estimates that are unduly pessimistic. 
Thus, expressed in this form we would have to say that in division 

| a/b - (a/b)* | S 2e, 

which fails to exhibit the fact that the pseudo quotient cannot ex
ceed the true quotient. More generally, suppose one carries out a se
quence of operations, coming out at the end with some quantity ƒ*. 
We expect our error analysis to yield for us two numbers, which we 
may call öi and ôw, which are such that the true value of ƒ must 
satisfy 

(9) f*-ôiûf ^f* + du. 
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If this can be done, then it is not at all important that 81 and 8U 

should be equal, or even that they should be both positive. If these 
are known then we can always, if we choose, replace ƒ* by another 
number that is as close as possible to the midpoint of the interval on 
which ƒ is now known to lie. The important thing, therefore, in de
signing the program, is to make ôw+ôj as small as possible. 

This quantity ôw+S* I shall call the uncertainty (cf. Kuntzmann's 
"incertitude"), the interval from ƒ* — 81 t o / * + S w will be the interval 
of uncertainty, and the two end points the limits of uncertainty. In 
general one will select a routine for which the uncertainty is as small 
as possible. Thereafter one can determine one or the other of the limits 
of uncertainty, and finally, perhaps, adjust the computed/* to place 
it as close as possible to the midpoint of the interval of uncertainty. 

Consider the evaluation of the first n + 1 terms of a Maclaurin 
series. Presumably, up to some n a t least, each additional term will 
increase the uncertainty but reduce the residual error. There will be 
some point beyond which further computation is unprofitable, either 
because the truncation error is already below tolerance, or because 
the decrease in the truncation error is overshadowed by the increase 
in the uncertainty. This point, moreover, will almost certainly vary 
with x. Hence one might be inclined to calculate and add successive 
terms until a term is reached whose value is less than some assigned 
quantity. 

Each term in the series will have the form diX\ If a,i is computed 
and multiplied by x\ then one forms 

{aiX%Y = [a?(*9*]*. 

If we use roundoff multiplication, the error limits are symmetric. 
Suppose, for simplicity, that 

If 

| Xi - (**)* I ^ fc€, 

then 

3<+l - (x*+l)* = x[x* - O*)*] + *(**)* - O i+1)*. 

Hence 

fc+issl x \ b + i. 
But £i = 0, so that 

& 3 ( 1 - | * | M ) / ( 1 - | * | ) < * - 1 . 
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Also 

dix1 — (dix1)* = (ai — af)xl + af[xl — (#•*)*] + a^x*)* — (a.-**)*-

Hence, for i ^ l , 

| a<*«- (*<**)* | ^ {«*| *|' + | a f |fc + l}«. 

The uncertainty in the term in x* is twice the right member of this 
inequality, and the total uncertainty for n + 1 terms is obtained by 
summing to i = n. If the a»- are of the order of unity, then for x of the 
order of unity the sum is of the order of n2e. 

If we are willing to fix n independently of x, or if we can select n 
in advance for any given x, then another procedure is possible. Let 

yn = an, y% = xyi+i + ai. 

Then by a backward induction, y0 is the required true sum. Also 

| yn - y* | S «„€, 

y»- — y? = *y»+i - (*y«+i)* + K - af) 

= ^(^+i - yA-i) + xy?+i "• (*y<+i)* + (a» — öf). 

Hence if 

| yi - y?\ û ne, 

then 

W ^ | ff | Vi+l + 1 + OLi, 

vo s È ^ M ' + ci H *!")/(!-1*1)-
o 

If a>ce; for all i, then 

i?o < (n + l)a + w, 

and if a is a t worst a small integer the uncertainty is of the order of a 
small multiple of ne, instead of being of the order of n2e. 

Quite often the computation of the ai can be incorporated into the 
induction so as to reduce the uncertainty still further. Consider the 
first n + 1 terms of e~*. Let 

yn = 1 + * / ( - -») , yi = 1 + xyi+1/(-i). 

Then yi is the required sum. Then 

x 1 
y< - yf = — : (yi+i - yf+i) - — [xy?+1 - (ay&i)*] 
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+ 
— i 

Let 

r(xy?+1)*y 

— w,€ < 'v,- — vr < me ^ yi — yc ^ m e. 

Then, using simple multiplication, 

f X f f ff % f 

t\i = — rji+h r\i = — rji + 2. 
% 1 

Hence if 

Vi ^ Vi + m 

so that rji€ represents the uncertainty, then 

rji = 2 + xrii+i/i. 

Now 77n^2, and by a reverse induction 

1 x xn 

— i? iâ 1 + — + • • • + — <«*. 
2 2 w! 

Hence, independently of w, 

(10) T;W < 2e\ 

Thus 2ee* is an absolute limit to the uncertainty. In general the in
clusion of an additional term increases the uncertainty by 2exn/n\1 

and decreases the residual error by an amount of the order of xn/n\. 
Continued fraction expansions sometimes have desirable proper

ties, not the least being that they may converge where the power 
series does not. If the fraction is written in the form 

F = b0 + — — • • • , 
h + b2 + 

and if cn represents either the numerator or the denominator of the 
nth. convergent, then by the well known recursion 

Cp z=z OpCy—l "T* dyCv—2* 

The analysis is greatly simplified when the a's and Vs are all positive. 
One may determine in advance that n for which 

rn = An/jjn 
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is sufficiently close to F. Then A* and J3n* are computed by applying 
the recursion to the A1 s and J3's, and finally 

F* = (A*/B*)* 

is the computed value of F. Then 

Fn - F* = Bnl{{An - A*) - {Bn - B*)A*/B*) 

+ A*/B* - (A*/B*)*. 

If an€ and ]8n€ represent the uncertainty in An and in Bn, respectively, 
then approximately the uncertainty in Fn is equal to 

[Bn-
1(*»+FPn) + 2]e. 

From the recursion we have 

cv — c? = b9(cp-\ — cjLi) + av{cv-2 — cjL*) 

+ (bv — b?)c?Li + {av - a*)c?L.2 

+ b?c}Li — (b^cjLi)* + ö,*rfL2 - (afcjLi)*. 

If 7„€ represents the uncertainty (hence either ape or j3ve as the case 
may be), then yv satisfies a recursion of the form 

7„ = bvyv-\ + avyv-2 + ôv, 

where dv represents a linear combination of the uncertainties in av 

and bv, together with added terms arising from the products being 
formed. Hence the 7*s satisfy a nonhomogeneous system whose 
matrix is identical with that of the system which determines the c's. 

The properties of continuants are well known and I shall not dis
cuss them here. However, it is clear that if the a's and b's are large, 
then the uncertainty will build up rapidly. In fact, it builds up much 
more rapidly in proportion than does cn, because of the presence of 
the nonhomogeneous term in each equation. Moreover, we may be 
faced with a difficult scaling problem. On the other hand, if the a's 
and ô's are too small, Bn may be quite small, and the factor 
JB"1 in the final uncertainty will cause trouble. The best plan seems 
to be to make every a„ = 1 if the bv are then small, or else every bv = 1 
if the av are then small. This does not necessarily eliminate the 
scaling problem, but if both a „ ^ l and bv^lt then scaling can be 
effected by introducing factors 2"""1 with sufficient frequency. 

In illustration of a computation of a different sort, consider the 
extraction of a square root by Newton's method. For solving x2—a 
= 0, it is convenient to write the iteration in the form 
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(11) Xi+x = Xi — A*(#t), A(x) = (x — a/x)/2. 

I have yet to define A*. If #0 = 1, it is easily shown that the mathe
matical sequence, defined with A instead of A*, converges mono-
tonically. One may expect, therefore, that the digital sequence will 
be monotonie at least up to some xif after which either A* vanishes, 
or else the xt- become periodic in some manner. 

There are several possible routines for computing a A*, all differing 
slightly from one another, and all giving slightly different results. I t 
turns out that if one programs the computation in the form 

- A* = { [ - * - ( - a/x)*]/2}\ 

then one can show that the sequence — A*(#*) increases monotonically 
to zero, and that when A*(x) = 0 , then 

(12) - e+(a + e2)1'2 S x < e + (a + e2)1'2; 

furthermore, for the same x, if x^2"1
1 then 

(*2)r* = G, 

and if x>2~1, then 

| (x2) * - a | g 2e. 

One could not, of course, expect that the pseudo square of the 
pseudo square root would always equal the number itself, since 
numbers below, say, €1/2 could not be pseudo square roots by any 
reasonable approximation. In other words, there are more digital 
numbers than pseudo square roots. The uncertainty in the square root 
obtained in this manner is exactly 2e, which is the smallest possible 
value. Since 

0 < (a + e2)1'2 - a1'2 ^ e, 

with equality holding only when a = 0, therefore 

- e < x - a1/2 < 2€. 

Hence if a112 is digital the routine always yields the strictly correct 
result. 

In the case of cube roots, the best method devised so far leaves an 
uncertainty greater than 2e by roughly e3/2. 

More generally, consider the problem of solving an equation 

f{x) = 0 
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for a particular root a that is simple and has been isolated. Suppose, 
by some means, one has found some approximation x' such that 

(13) «i(*0 è ƒ*(*') è - àu(x'). 

For definiteness suppose ƒ is increasing, and suppose, moreover, that 
an m>0 is known such that f^m throughout an interval containing 
both a and x'. Then 

(14) x' - (ƒ* + Ôu)/m ^ a ^ ^ - ( f ~ 8,)/m. 

Since (14) holds for any x' satisfying (13), one might replace x' by 
xr ± 2ve and improve the limits slightly. 

There are, of course, many ways of writing an equation f(x) = 0 
satisfied by a, and for each ƒ, many possible possible routines for 
evaluating it. The limits (14) are optimal for a given ƒ and a given 
routine for evaluating it, but will, in general, be different for dif
ferent routines. 

If one is to employ Newton's method, forming the sequence 

Xi+i « Xi — A*(xi), 

where 

A(*) = ƒ(*)/ƒ(*), 

then the equation A = 0 is equivalent to /==0, and m is close to 
unity. If A is computed as a quotient, then one can write 

A _ A* = [ ƒ - ƒ * - A ( / - ƒ'*)]/ƒ* + [(ƒ*/ƒ'*) - (ƒ*/ƒ'*)*]• 

Near x = ce, A should be a small multiple of e, and therefore the second 
term in the first bracket should be negligible. Hence approximately, 
in the vicinity of the root, 

(15) A - A* = (ƒ - ƒ*)/ƒ'* + [(ƒ*/ƒ*) - (ƒ*/ƒ*)*]. 

The first term on the right represents again the uncertainty in ƒ 
divided by the derivative, but this uncertainty is increased by the 
fixed amount 2e resulting from the division. 

Of the many iterations of higher order that have been proposed, it 
seems unlikely that they can prove useful for this type of computa
tion except possibly in very special cases. Even the simple-minded 
scheme of successive bisection requires at most a evaluations of ƒ, a 
being, for most machines, approximately 40. Newton's method re
quires the evaluation of ƒ along wi th / , but should converge in fewer 
steps. An iteration of higher order will generally require a more com
plicated program for each step, with a corresponding increase in the 
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uncertainty. What little can be gained by fewer steps is apt to be 
more than lost in the program. 

My remarks here have not been directed to the experienced com
puters, by whom most of my conclusions are very likely well under
stood already. But however well known these matters may be, they 
do not seem to have been written down. The systematic study of 
generated error may be said to have begun with the paper by von 
Neumann and Goldstine [9] to which reference was made above. 
More recently Lotkin and Remage [7; 8] have analyzed the genera
tion of error in matrix inversion by a different method. Goldstine 
(unpublished) has discussed the generation of error in the determina
tion of the proper values of Hermitian matrices using an iterative 
scheme, and Givens [2], in a recent report, has analyzed the ap
plication of a certain direct method to the same problem. Other 
studies are made in memoranda and reports from various research 
organizations where computing machines are in operation. 

My purpose here has been to indicate how the techniques can be 
applied to a variety of situations, and to point up the need for a sys
tematic attack so as to transform the art of computing into a science 
of computing. 
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