
GENERATION OF ERRORS IN DIGITAL COMPUTATION

ALSTON S. HOUSEHOLDER

Consider the problem of computing the numerical value f(x) of
some function ƒ corresponding to a particular value of x. If x is a
physical quantity whose value is known only from measurement,
then one has available not x itself but some approximation x*. If x
is a mathematical constant, one may again be forced to replace x by
some approximate value x*. This is to be expected at least when x
is irrational, and is often true when x is rational. For these or other
reasons, though f(x) is desired, one may have to accept some f(x*)
instead.

Unless the function ƒ is rational, one will generally be forced to
represent ƒ approximately by a truncated Taylor series, or an
orthogonal series, or in some other fashion. In general, therefore, one
does not strictly compute even ƒ(x*), but rather some ƒ<>(#*), where
fa represents a function which approximates ƒ over some range con
taining x*.

Suppose that fa is defined by a finite sequence of elementary arith
metic operations, and that the computations are digital. In general
the result of a division is not representable exactly by a terminating
decimal. The same statement holds, of course, if one were using any
fixed base. The result of multiplying two numbers, each expressible
by n digits, will in general require 2n digits for its representation and
further multiplications would increase the number of digits in propor
tion. Hence for either a product, or a quotient, one will in general
replace the true result by an approximation obtained by truncating
the sequence of digits and perhaps adjusting by some rule the last
one retained. Hence one does not, in general, end up even with/ a(x*),
but rather with some ƒ*(#*), in which true products and quotients
are replaced by pseudo products and pseudo quotients, obtained ac
cording to rules that are determined in part by the nature of the
facilities used for the computing.

Thus one starts to compute f(x) and ends by computing some
ƒ*(#*), thereby committing an error whose amount can be expressed
as a sum of three independent components:

ƒ(*) - ƒ*(**) = [ƒ(*) - ƒ(**)] + [ƒ(**) - ƒ„(**)]
_ + [ƒ.(**) - ƒ*(**)].

An address delivered before the Spartanburg meeting of the Society on November
28, 1953 by invitation of the Committee to Select Hour Speakers for Southeastern
Sectional Meetings; received by the editors December 4, 1953.

234

GENERATION OF ERRORS IN DIGITAL COMPUTATION 235

Of these three components, the first will be called the propagated
error, the second the residual error, and the third the generated error.

If it is possible to assign limits to the error x—x*, then by standard
methods one can estimate the propagated error. The propagated error
is completely independent of computing techniques and devices and
can be reduced only by improving the approximation x* to x.

The nature of the facilities available to the computor will guide
him in his selection of the approximation fa. So, too, will the require
ments of accuracy: if a linear approximation will suffice, there is no
point in computing the quadratic term. But once fa has been de
termined, the residual error is also determined. It can be estimated
by applying standard remainder formulas.

There remains, however, the generated error. I t depends upon the
facilities being used, and even upon quite subtle details of their ap
plication. This is the subject on which I wish to speak.

Unfortunately, there is no well developed general theory of gen
erated error. For one thing the need did not become acute until the
advent of automatic, high speed computing machinery. For another
thing, the differences among machines now operating are such that
each machine demands a theory all its own. Nevertheless, a few
general principles can be stated, or at least illustrated and used as
guides. This I shall at tempt to do, first by describing a specific com
puting system, and then analyzing certain particular computational
sequences.

In 1947, von Neumann and Goldstine gave an elaborate analysis
of the errors generated in the course of inverting a matrix by Gaus
sian elimination. This is the first systematic treatment of generated
error to appear in the literature. The computing system I shall pre
suppose is called the Oracle and is quite similar to theirs, but differs
in a few respects. I shall assume that a register in the machine
exhibits <r + l binary digits, ceo, ai, • • • , aay and that the machined
arithmetic is designed with the assumption that these digits represent
a number

a = - aQ + ax-2-1 + • • • + a,-2-°.

Any number so represented will be called a digital number, so that
digital numbers satisfy

- 1 ^ a < 1,

and are integral multiples of 2~ff. The binary digit ce0 is called the sign
digit, the others the precision digits.

When multiplication is called for, the sign digit and the first <r

236 A. S. HOUSEHOLDER [May

precision digits of the product will appear in one of the registers, and
the remaining a precision digits will appear in the other. Normally
one retains only the most significant part, and this will be called the
simple pseudo product. If the factors are a and ô, the simple pseudo
product will be designated (ab)*, A special order will yield ab+2~a~1,
whose most significant part is the rounded pseudo product (ab)?.
These pseudo products satisfy the relations

(2) 0 ^ ab - (ab)* < 2e, - e ^ ab - (ab)* < e,

where

(3) e = 2-"-1

is the unit rounding error.
When multiplication is called for, and the pseudo product is to be

sent to storage, then if a = b= —• 1, storage will receive — 1. Hence in
planning a computation one must be sure that this case cannot arise,
or else provide remedial steps to be taken in case it does. For all other
combinations of a and 6, multiplication is legitimate.

For division a/6, it is required that \a\ < | b\. Division can be per
formed with a digital, or with a of the form

a = #i + #2-2-<r,

where a,\ and a2 are digital and a 2 ^ 0 . In either case, following the
division one register will exhibit a truncated pseudo quotient (a/b) *
which satisfies

0 ^ a/b - (a/b)* <2e, b> 0,

0 < a/b - (a/by ^ 2e, b < 0.

The other register will exhibit the remainder.
If n is a small positive integer the direct division of n into a digital

number a can be formed by forming 2~(ra/(2~<Tn). The somewhat
more precise limits for the pseudo quotient are often useful:

0 ^ a/n - (a/n)* S 2(« - l)e/n,

2e/n ^ a/(-n) - [a / (- »)] * ^ 2e.

Addition and subtraction propagate, but do not generate errors,
unless the sum or difference falls outside the digital range. This would
be considered a blunder and I shall assume it does not happen.
Likewise I shall assume that any product ab<l1 and that for any
quotient \a/b\ < 1 .

In general a mathematical formulation does not by any means de-

1954] GENERATION OF ERRORS IN DIGITAL COMPUTATION 237

fine uniquely a computational procedure, and it is the computational
procedure that determines the generated error. A particular ordered
sequence of operations is called a routine, and the unambiguous
prescription for such a sequence is a program. In planning the
computation of a particular function, one wishes to program a rou
tine that will minimize the maximum possible generated error, or
that will a t least hold the maximum possible generated error within
tolerable bounds. This is not the only possible criterion, but it is the
one that will be applied here.

Consider to begin with the very simple problem of computing
a I(be). To avoid tedious multiplicity of cases, assume all factors posi
tive, and assume, as usual, that any operation called for is legitimate.

The computation, then, seems eminently reasonable. We have a
choice, however, of doing two divisions in sequence, or of doing first
a multiplication and then a division. Machine-wise, as many steps
are required one way as the other. Suppose the multiplication is done
first. We have

a T a ~1* a a a [~ a " l *

To ~ L(M*J = Te ~ "(fa)*" " (W "~ L(6c)r*J
a r _ a f a "1*

= — — [(be)? - be] + .
be(be)?lK (be)? I (be)? J

The second difference on the right is the difference between a true
quotient and a pseudo quotient, and lies between 0 and 2e. Consider,
therefore, the first expression on the right.

Disregarding the trivial case # = 0, which leads to a result that is
strictly correct, the division could be legitimate with (be)? as small
as 2_<r+1 = 4€ provided a=*2e. Since

- e ^ be - (be)/ < e,

therefore ab can be as small as 4e — e = 3e. This is assuming that the
limits have been attained and we have

a = 2e, (be)? = 4e, be = 3e.

In this event, the first expression on the right becomes

2e r . 1
4e - 3e = — •

3e-4e 6
The computed quotient can be too small by 1/6, or 25% of the true
quotient 2 /3 .

238 A. S. HOUSEHOLDER [May

If be and (be)? differ in the other direction, the computed result
can be too large by nearly 1/10, or again 25% of the true quotient
which would, in this case, be 2/5.

This is, of course, an extreme, but perfectly possible case. Since the
error is certainly intolerable, let us consider the other routine of
dping successive divisions. We have now

ï-[(T)y-r-[f-(T)>(T)7«-[(T)y-T-
Again it is the first expression that requires consideration. We now
observe immediately that if b and c are different, then it will make a
difference in our result whether we first divide by &, as indicated,
or first divide by c instead. Suppose we have somehow arranged it so
that e^b, which gives the most favorable result. Then, since cb>a,
necessarily

c > a1'2.

Again neglecting the trivial case a = 0, we can assume a ^ 2e and there
fore

c > (2e)1'2.

Hence we come out with the result that

(6) O J5-[(T)*/'I< , ! , | , ," + !'
This is considerably better, but even so only about half the figures are
significant and we have assumed that c was known to be not less than
b.

The extremely unfavorable result of the first routine occurs when be
is small. If be is not so small the result might be more satisfactory.
Assuming again that e>b, we shall say that the first routine is to be
preferred over the second unless

a 1
^ —,

bc(be)? e
or, since all factors are supposed positive, unless

b g a/(bc)f.

This is equivalent to saying that

(7) b S [a/(bc)?]\

i954l GENERATION OF ERRORS IN DIGITAL COMPUTATION 239

The second inequality implies the first since the pseudo quotient
cannot exceed the true quotient. Conversely, the pseudo quotient
and b are both digital. Hence if b exceeds the pseudo quotient, it
must do so by a t least as much as 2e, whereas the true and pseudo
quotients differ by less than 2e.

I t follows that if our pseudo quotient, obtained by following the
first routine, is exceeded by both of the factors in the denominator,
then we have made the best selection. If not, we should recompute,
following the second routine. To show that the condition is not trivial,
take a = 2-10, bc = 2~6. Then

a/(bc)? = 2~4

and condition (7) fails if b = c = 2~z, but is satisfied if & = 2~5, c = 2~1.
If one does not know a priori enough about the magnitudes of the

quantities involved to select the preferred routine, or at least to know
that one routine or the other, even if not the preferred one, will yield
a satisfactory result, then it is quite possible to program both routines
and the selection of the better of the two results. The machine will
then follow the first method, test the criterion, and recompute by the
second method if the criterion fails.

On the Oracle, the special feature permitting the direct use of a
double precision dividend makes it possible to get a much better
result and with less trouble. Suppose b^c. The discrimination is
easily programmed. The machine division of a by b yields the partial
quotient and the remainder, so that one can store the partial quotient
and continue the division to obtain the next a digits of the quotient.
Altogether, then, we have 2<r precision digits of the quotient a/b,
which form a number (a/b)' satisfying

0 g a/b - (a/by < 4e2.

If one divides (a/b)f by c and denotes the result by (a/bc)*, the error
can be written

± - (SLY , ^ pi - (!)'] + <-• (±)'- (^Y.
be \bcj lb Vft/J \bj \bcj

Since

be > a, c ^ b,

it follows that

c > a1'2

240 A. S. HOUSEHOLDER [May

and except for the trivial case a = 0,

a ^ 2e.

Hence

c > (2e)1'2.

Hence

(8) o g - - ^ - j < 2e[l + (2€)i/»].

The example I have just given is by no means artificial. Thus,
iterated division is required in the formation of divided differences
for purposes of interpolation, and the number of factors in the divisor
is equal to the order of the divided difference. Let the divided differ
ences be formed according to the iterative scheme

Mathematically, yo...i is a symmetric function of its arguments.
However, if the digital number 3&...» is to be formed and utilized
in the computation of the divided difference of next higher order, then
it is clear from the foregoing discussion that the optimal arrange
ment will be that for which

%0 < %1 < %2 < * * *

or that for which the inequalities are reversed. Unfortunately, the
formation of a double precision dividend is more costly, since the
dividend is the difference of two quantities, and the difference of
double precision numbers requires a fair amount of programming.

I t is usual to indicate the limits of error by estimating the absolute
value of the difference between the computed and the desired results.
However, this may lead to estimates that are unduly pessimistic.
Thus, expressed in this form we would have to say that in division

| a/b - (a/b)* | S 2e,

which fails to exhibit the fact that the pseudo quotient cannot ex
ceed the true quotient. More generally, suppose one carries out a se
quence of operations, coming out at the end with some quantity ƒ*.
We expect our error analysis to yield for us two numbers, which we
may call öi and ôw, which are such that the true value of ƒ must
satisfy

(9) f*-ôiûf ^f* + du.

i954l GENERATION OF ERRORS IN DIGITAL COMPUTATION 241

If this can be done, then it is not at all important that 81 and 8U

should be equal, or even that they should be both positive. If these
are known then we can always, if we choose, replace ƒ* by another
number that is as close as possible to the midpoint of the interval on
which ƒ is now known to lie. The important thing, therefore, in de
signing the program, is to make ôw+ôj as small as possible.

This quantity ôw+S* I shall call the uncertainty (cf. Kuntzmann's
"incertitude"), the interval from ƒ* — 81 t o / * + S w will be the interval
of uncertainty, and the two end points the limits of uncertainty. In
general one will select a routine for which the uncertainty is as small
as possible. Thereafter one can determine one or the other of the limits
of uncertainty, and finally, perhaps, adjust the computed/* to place
it as close as possible to the midpoint of the interval of uncertainty.

Consider the evaluation of the first n + 1 terms of a Maclaurin
series. Presumably, up to some n a t least, each additional term will
increase the uncertainty but reduce the residual error. There will be
some point beyond which further computation is unprofitable, either
because the truncation error is already below tolerance, or because
the decrease in the truncation error is overshadowed by the increase
in the uncertainty. This point, moreover, will almost certainly vary
with x. Hence one might be inclined to calculate and add successive
terms until a term is reached whose value is less than some assigned
quantity.

Each term in the series will have the form diX\ If a,i is computed
and multiplied by x\ then one forms

{aiX%Y = [a?(*9*]*.

If we use roundoff multiplication, the error limits are symmetric.
Suppose, for simplicity, that

If

| Xi - (**)* I ^ fc€,

then

3<+l - (x*+l)* = x[x* - O*)*] + *(**)* - O i+1)*.

Hence

fc+issl x \ b + i.
But £i = 0, so that

& 3 (1 - | * | M) / (1 - | * |) < * - 1 .

242 A. S. HOUSEHOLDER [May

Also

dix1 — (dix1)* = (ai — af)xl + af[xl — (#•*)*] + a^x*)* — (a.-**)*-

Hence, for i ^ l ,

| a<*«- (*<**)* | ^ {«*| *|' + | a f |fc + l}«.

The uncertainty in the term in x* is twice the right member of this
inequality, and the total uncertainty for n + 1 terms is obtained by
summing to i = n. If the a»- are of the order of unity, then for x of the
order of unity the sum is of the order of n2e.

If we are willing to fix n independently of x, or if we can select n
in advance for any given x, then another procedure is possible. Let

yn = an, y% = xyi+i + ai.

Then by a backward induction, y0 is the required true sum. Also

| yn - y* | S «„€,

y»- — y? = *y»+i - (*y«+i)* + K - af)

= ^(^+i - yA-i) + xy?+i "• (*y<+i)* + (a» — öf).

Hence if

| yi - y?\ û ne,

then

W ^ | ff | Vi+l + 1 + OLi,

vo s È ^ M ' + ci H *!")/(!-1*1)-
o

If a>ce; for all i, then

i?o < (n + l)a + w,

and if a is a t worst a small integer the uncertainty is of the order of a
small multiple of ne, instead of being of the order of n2e.

Quite often the computation of the ai can be incorporated into the
induction so as to reduce the uncertainty still further. Consider the
first n + 1 terms of e~*. Let

yn = 1 + * / (- -») , yi = 1 + xyi+1/(-i).

Then yi is the required sum. Then

x 1
y< - yf = — : (yi+i - yf+i) - — [xy?+1 - (ay&i)*]

19541 GENERATION OF ERRORS IN DIGITAL COMPUTATION 243

+
— i

Let

r(xy?+1)*y

— w,€ < 'v,- — vr < me ^ yi — yc ^ m e.

Then, using simple multiplication,

f X f f ff % f

t\i = — rji+h r\i = — rji + 2.
% 1

Hence if

Vi ^ Vi + m

so that rji€ represents the uncertainty, then

rji = 2 + xrii+i/i.

Now 77n^2, and by a reverse induction

1 x xn

— i? iâ 1 + — + • • • + — <«*.
2 2 w!

Hence, independently of w,

(10) T;W < 2e\

Thus 2ee* is an absolute limit to the uncertainty. In general the in
clusion of an additional term increases the uncertainty by 2exn/n\1

and decreases the residual error by an amount of the order of xn/n\.
Continued fraction expansions sometimes have desirable proper

ties, not the least being that they may converge where the power
series does not. If the fraction is written in the form

F = b0 + — — • • • ,
h + b2 +

and if cn represents either the numerator or the denominator of the
nth. convergent, then by the well known recursion

Cp z=z OpCy—l "T* dyCv—2*

The analysis is greatly simplified when the a's and Vs are all positive.
One may determine in advance that n for which

rn = An/jjn

244 A. S. HOUSEHOLDER [May

is sufficiently close to F. Then A* and J3n* are computed by applying
the recursion to the A1 s and J3's, and finally

F* = (A*/B*)*

is the computed value of F. Then

Fn - F* = Bnl{{An - A*) - {Bn - B*)A*/B*)

+ A*/B* - (A*/B*)*.

If an€ and]8n€ represent the uncertainty in An and in Bn, respectively,
then approximately the uncertainty in Fn is equal to

[Bn-
1(*»+FPn) + 2]e.

From the recursion we have

cv — c? = b9(cp-\ — cjLi) + av{cv-2 — cjL*)

+ (bv — b?)c?Li + {av - a*)c?L.2

+ b?c}Li — (b^cjLi)* + ö,*rfL2 - (afcjLi)*.

If 7„€ represents the uncertainty (hence either ape or j3ve as the case
may be), then yv satisfies a recursion of the form

7„ = bvyv-\ + avyv-2 + ôv,

where dv represents a linear combination of the uncertainties in av

and bv, together with added terms arising from the products being
formed. Hence the 7*s satisfy a nonhomogeneous system whose
matrix is identical with that of the system which determines the c's.

The properties of continuants are well known and I shall not dis
cuss them here. However, it is clear that if the a's and b's are large,
then the uncertainty will build up rapidly. In fact, it builds up much
more rapidly in proportion than does cn, because of the presence of
the nonhomogeneous term in each equation. Moreover, we may be
faced with a difficult scaling problem. On the other hand, if the a's
and ô's are too small, Bn may be quite small, and the factor
JB"1 in the final uncertainty will cause trouble. The best plan seems
to be to make every a„ = 1 if the bv are then small, or else every bv = 1
if the av are then small. This does not necessarily eliminate the
scaling problem, but if both a „ ^ l and bv^lt then scaling can be
effected by introducing factors 2"""1 with sufficient frequency.

In illustration of a computation of a different sort, consider the
extraction of a square root by Newton's method. For solving x2—a
= 0, it is convenient to write the iteration in the form

19541 GENERATION OF ERRORS IN DIGITAL COMPUTATION 245

(11) Xi+x = Xi — A*(#t), A(x) = (x — a/x)/2.

I have yet to define A*. If #0 = 1, it is easily shown that the mathe
matical sequence, defined with A instead of A*, converges mono-
tonically. One may expect, therefore, that the digital sequence will
be monotonie at least up to some xif after which either A* vanishes,
or else the xt- become periodic in some manner.

There are several possible routines for computing a A*, all differing
slightly from one another, and all giving slightly different results. I t
turns out that if one programs the computation in the form

- A* = { [- * - (- a/x)*]/2}\

then one can show that the sequence — A*(#*) increases monotonically
to zero, and that when A*(x) = 0 , then

(12) - e+(a + e2)1'2 S x < e + (a + e2)1'2;

furthermore, for the same x, if x^2"1
1 then

(*2)r* = G,

and if x>2~1, then

| (x2) * - a | g 2e.

One could not, of course, expect that the pseudo square of the
pseudo square root would always equal the number itself, since
numbers below, say, €1/2 could not be pseudo square roots by any
reasonable approximation. In other words, there are more digital
numbers than pseudo square roots. The uncertainty in the square root
obtained in this manner is exactly 2e, which is the smallest possible
value. Since

0 < (a + e2)1'2 - a1'2 ^ e,

with equality holding only when a = 0, therefore

- e < x - a1/2 < 2€.

Hence if a112 is digital the routine always yields the strictly correct
result.

In the case of cube roots, the best method devised so far leaves an
uncertainty greater than 2e by roughly e3/2.

More generally, consider the problem of solving an equation

f{x) = 0

246 A. S. HOUSEHOLDER [May

for a particular root a that is simple and has been isolated. Suppose,
by some means, one has found some approximation x' such that

(13) «i(*0 è ƒ*(*') è - àu(x').

For definiteness suppose ƒ is increasing, and suppose, moreover, that
an m>0 is known such that f^m throughout an interval containing
both a and x'. Then

(14) x' - (ƒ* + Ôu)/m ^ a ^ ^ - (f ~ 8,)/m.

Since (14) holds for any x' satisfying (13), one might replace x' by
xr ± 2ve and improve the limits slightly.

There are, of course, many ways of writing an equation f(x) = 0
satisfied by a, and for each ƒ, many possible possible routines for
evaluating it. The limits (14) are optimal for a given ƒ and a given
routine for evaluating it, but will, in general, be different for dif
ferent routines.

If one is to employ Newton's method, forming the sequence

Xi+i « Xi — A*(xi),

where

A(*) = ƒ(*)/ƒ(*),

then the equation A = 0 is equivalent to /==0, and m is close to
unity. If A is computed as a quotient, then one can write

A _ A* = [ƒ - ƒ * - A (/ - ƒ'*)]/ƒ* + [(ƒ*/ƒ'*) - (ƒ*/ƒ'*)*]•

Near x = ce, A should be a small multiple of e, and therefore the second
term in the first bracket should be negligible. Hence approximately,
in the vicinity of the root,

(15) A - A* = (ƒ - ƒ*)/ƒ'* + [(ƒ*/ƒ*) - (ƒ*/ƒ*)*].

The first term on the right represents again the uncertainty in ƒ
divided by the derivative, but this uncertainty is increased by the
fixed amount 2e resulting from the division.

Of the many iterations of higher order that have been proposed, it
seems unlikely that they can prove useful for this type of computa
tion except possibly in very special cases. Even the simple-minded
scheme of successive bisection requires at most a evaluations of ƒ, a
being, for most machines, approximately 40. Newton's method re
quires the evaluation of ƒ along wi th / , but should converge in fewer
steps. An iteration of higher order will generally require a more com
plicated program for each step, with a corresponding increase in the

i954] GENERATION OF ERRORS IN DIGITAL COMPUTATION 247

uncertainty. What little can be gained by fewer steps is apt to be
more than lost in the program.

My remarks here have not been directed to the experienced com
puters, by whom most of my conclusions are very likely well under
stood already. But however well known these matters may be, they
do not seem to have been written down. The systematic study of
generated error may be said to have begun with the paper by von
Neumann and Goldstine [9] to which reference was made above.
More recently Lotkin and Remage [7; 8] have analyzed the genera
tion of error in matrix inversion by a different method. Goldstine
(unpublished) has discussed the generation of error in the determina
tion of the proper values of Hermitian matrices using an iterative
scheme, and Givens [2], in a recent report, has analyzed the ap
plication of a certain direct method to the same problem. Other
studies are made in memoranda and reports from various research
organizations where computing machines are in operation.

My purpose here has been to indicate how the techniques can be
applied to a variety of situations, and to point up the need for a sys
tematic attack so as to transform the art of computing into a science
of computing.

REFERENCES

1. Paul S. Dwyer, Errors of matrix computations, simultaneous linear equations and
the determination of eigenvalues, U. S. Dept. of Commerce, Applied Mathematics
series, vol. 29 (1953) pp. 49-58.

2. J. W. Givens, Numerical computation of the characteristic values of a real sym
metric matrix, ORNL Report 1574, 1953.

3. Saul Gorn, On the study of computational errors, Ballistic Research Laboratories,
Report No. 816, 1952.

4. A. S. Householder, Errors in iterative solutions of linear systems, Proceedings of
the Association for Computing Machinery, Meeting a t Toronto, Ont. Sept. 8-10,
1952, pp. 30-33.

5. , Principles of numerical analysis, McGraw-Hill, 1953.
6. J . Kuntzmann, Notions de grille et de tube, Ann. Inst. Fourier vol. 2 (1950) pp.

197-205.
7. Max Lotkin and R. Remage, Matrix inversion by partitioning, Proceedings of the

Association for Computing Machinery, Meeting a t Toronto, Ont. Sept. 8-10, 1952,
pp. 36-41.

3# 1 Scaling and error analysis for matrix inversion by partitioning, Ann.
Math. Statist, vol. 24 (1953) pp. 428-439.

9. John von Neumann and H. H. Goldstine, Numerical inversion of matrices of high
order, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 1021-1099.

10. A. M. Turing, Rounding off errors in matrix processes, Quart. J . Mech. Appl.
Math . vol. 1 (1948) pp. 287-308.

OAK RIDGE NATIONAL LABORATORY

