
THE FIRST SUMMER MATHEMATICAL INSTITUTE 

The First Summer Mathematical Institute, devoted to Lie algebras 
and Lie groups, was held from June 20 to July 31, 1953 at Colby 
College, Waterville, Maine. It was supported by a grant from the 
National Science Foundation to the American Mathematical Society. 
The Organization Committee consisted of C. C. Chevalley, A. M. 
Gleason, and Nathan Jacobson (chairman). 

The following twenty mathematicians attended the Institute by 
invitation of the Organization Committee: Armand Borel, C. C. 
Chevalley, W. L. Chow, A. M. Gleason, Morikumi Goto, G. P. 
Hochschild, Kenkichi Iwasawa, Nathan Jacobson, Irving Kaplan-
sky,1 E. R. Kolchin, W. G. Lister, Deane Montgomery,1 G. D. 
Mostow, Hans Samelson, R. D. Schafer, E. V. Schenkman, H. C. 
Wang, Hidehiko Yamabe, Hans Zassenhaus, and Leo Zippin.1 

The Institute was open to all interested mathematicians and the 
following nine attended: S. A. Amitsur, S. G. Bourne, J. L. Brenner, 
H. E. Campbell, C. W. Curtis, E. C. Paige, Jr., A. J. Penico, G. B. 
Seligman, and M. L. Tomber. 

The formal program of the Institute consisted of a seminar on sim
ple Lie algebras and the following four series of lectures: 
Armand Borel, The cohomology of compact connected Lie groups and 

their coset spaces ; 
C. C. Chevalley, Cartan subalgebras and Cartan subgroups', 
Hidehiko Yamabe, Structure of locally compact groups ; 
Hans Zassenhaus, Representation theory of Lie algebras of character-

istic p. 
These are summarized below. 
In addition there was a series of single talks on various mathemati

cal topics as follows: 
Kenkichi Iwasawa, On some totally disconnected compact groups. 
H. C. Wang, Closed manifolds with homogeneous complex analytic 

structure. 
Morikumi Goto, Dense imbeddings of locally compact connected groups. 
E. R. Kolchin, Galois theory of differential fields. 
W. L. Chow, The Albanese variety of an algebraic variety. 
A. M. Gleason, Lattices of topologies. 
Hans Zassenhaus, Trace functions of characteristic p. 
G. D. Mostow, Uniform subgroups of solvable groups. 

Received by the editors June 7, 1954. 
1 Attended for the first three weeks only. 
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C. C. Chevalley, Galois theory of semi-simple Lie algebras. 
Colby College provided office space and dormitory accommoda

tions for the members of the Institute and their families and made 
available their recreation area on Great Pond where a picnic was held 
on the fourth of July. 

Beyond the lectures themselves, the informal contacts that the 
Institute afforded were tremendously valuable. Several papers, many 
of them collaborations, will soon appear in a Memoirs volume en-
entitled Proceedings of the First Summer Mathematical Institute, and 
it is expected that many other results will evolve from the stirring of 
ideas effected by the six weeks of study and conversation. 

A. M. GLEASON 

THE COHOMOLOGY OF COMPACT CONNECTED L l E GROUPS AND 

THEIR COSET SPACES 

Lectures by Armand Borel 

This seminar was devoted to a survey of the main results obtained 
so far in the study of the cohomology ring of compact connected Lie 
groups and their homogeneous spaces. One may roughly divide these 
twelve talks into four groups. 

In the first part were discussed general properties of groups, i.e., 
properties which derive solely from the existence of a product (say 
associative with unit) ; that such an approach is fruitful was shown 
by H. Hopf, who proved that the cohomology ring H*(X, Ko) of 
such a compact manifold, with respect to a field of coefficients K0 of 
characteristic zero, is a Grassmann algebra generated by elements of 
odd degrees, or in other words that it is isomorphic to the cohomology 
ring of a product of odd-dimensional spheres. A generalization of this 
theorem, valid for coefficient fields of any characteristic, was estab
lished. The product in X also allows one to define a product (intro
duced by Pontrjagin) in the homology group of X, which thus be
comes a ring; over a field of characteristic zero, it is again an exterior 
algebra (Samelson's theorem), but this result has been generalized 
only in some special cases; the chief new difficulty arising here is the 
fact that the Pontrjagin product does not have the familiar anticom-
mutativity property of the cup-product in general. 

The second part was devoted to relations between the cohomology 
ring H*(G, Kp) (Kp field of characteristic p) of a compact connected 
Lie group G and the cohomology ring H*(BQ, KP) of a classifying 
space Bo for G, a point which is at the source of most of the progress 
made recently in these questions. We recall that a fiber bundle E, 
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with base B and typical fiber F, is said to be a principal bundle with 
structural group G if G operates on E, leaving each fiber invariant, 
and being simply transitive on them (thus F is homeomorphic to G) ; 
it is a universal bundle for G and for n if moreover its n first homotopy 
groups vanish. The existence of universal bundles for any compact 
Lie group and any n is well known and important. The base space of 
a universal bundle is called a classifying space for G (and for n)y and 
denoted BQ\ it owes its name to the fact that the different structures 
of principal bundles with structural group G over a given locally 
finite polyhedron B (of dimension Sri) are in 1-1 correspondence 
with the homotopy classes of continuous maps of B into B Q. By use 
of Leray's spectral sequence of fiber bundles one can establish rela
tions between H*(Gy Kp) and H * ( 5 Ö , KP)} or more precisely one can 
see how certain assumptions on the structure of one of them affect 
the other; that study has not yet been performed in the most general 
case; however, partial results (with a rather wide range of applica
tions) have been obtained and were discussed. The main one says 
that if H*(Gj Kp) is an exterior algebra generated by r elements of 
odd degrees Yi (1 g i g r a ) , then H*(BG, KP) is a ring of polynomials 
over r variables of degrees r* + l, and conversely. 

When U is a closed subgroup of G, there exists a natural map of 
Bu into BQ, denoted p(£7, G), which is particularly interesting when 
U=Tr is a maximal torus of G ; in that case H*(Bxj) Kp) is a ring 
of polynomials in r variables of degree two, on which the Weyl group 
of G acts in a natural fashion (e.g., over the real field, jBT*(5rr, R) 
may be identified with the ring of polynomials with real coefficients 
on the Lie algebra of Tr). I t was shown that under suitable assump
tions, always fulfilled in characteristic zero (mainly H*(G, Z) has no 
^-torsion, i.e., has no torsion coefficient divisible by p), the homo-
morphism p*(Tr, G) induced by p(Tr, G) maps H*(BQ, KP) isomorphi-
cally into H*{BTr

y Kp)y essentially on the ring of invariants of the 
Weyl group. Thus one gets a group-theoretical interpretation of 
H*(BQ, Kp), which, via the theorem stated at the end of the preced
ing paragraph, also gives relations between H*(G, Kp) and the Weyl 
group (obtained first in characteristic zero by C. Chevalley). Whether 
one can tie up so closely H*(BG, KP) with group theoretical properties 
of G in the general case where G has ^-torsion is unknown; modulo 2, 
however, a special case has been worked out, that of the orthogonal 
group, where replacing the maximal torus by the subgroup of di
agonal matrices leads to results bearing a close and suggestive anal
ogy to the preceding ones. 

The methods and results expounded in the first two parts do not 
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allow one in general to determine H*(G, Kp) for a given G having p-
torsion, and for that purpose one has to use special devices, taking 
advantage of some particular properties of the group in consideration. 
The third group of talks described how the above general theorems 
combined with the study of spectral sequences of special fiberings 
give the cohomology mod p of the classical groups, the spinor groups, 
and the first two exceptional groups G2, F*. 

The last part of the seminar was devoted to homogeneous spaces. 
Here the problem is to find relations between the cohomology rings of 
a group G, a subgroup 27, and the coset space G/U; to be more specif
ic, one wants mainly to determine the last one by means of the two 
others and of some information describing the position of U in G. 
Rather complete results in that direction have been obtained for the 
cohomology over the real numbers, by use of differential-geometric 
and algebraic methods, the most comprehensive one being a theorem 
of H. Cartan; it shows how to calculate (at least theoretically) 
H*(G/U, R), knowing H*(G, R), and certain data which turn out to 
be essentially H*(Bu> R) and p*(U, G), and there was given here 
a topological proof, in the framework of fiber bundle theory. 

Mod p, the situation is less satisfactory; though the methods and 
results known so far are sufficient to deal with many classical homo
geneous spaces, they nevertheless pertain only to special cases. The 
discussion was restricted mainly to one of these, that of equality of 
ranks (i.e., G and U have a maximal torus in common); also, the 
analogy mentioned previously between the role of maximal tori in 
real cohomology and of the diagonal matrices for the cohomology 
mod 2 of the orthogonal group 0{n) was pursued further and allowed 
us to determine H*(0(n)/U, K2) when U has the same "rank mod 2" 
as 0(n), i.e., when it contains an abelian subgroup of type (2, • • • , 2) 
maximal in 0(n). 

ARMAND BOREL 

CARTAN SUBALGEBRAS AND CARTAN SUBGROUPS 

Lectures by C. C. Chevalley 

We consider a field K of characteristic zero and a vector space V 
of finite dimension n over K. The set L(V) of all jRT-endomorphisms 
of F is a vector space of dimension n2 over K. L(V) becomes a Lie 
algebra if it is endowed with the bracket operation [X, Y]=XY 
— YX) we denote this Lie algebra by $l(V). If the intersection © of 
some algebraic variety in L(V) with the group of nonsingular endo-
morphisms of F is a group, then © is called an algebraic group of 
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automorphisms of V. Forming the differentials (formal) at the unit 
element of the polynomials defining ®, we get a family of linear 
functions on gl(F) which annihilate a subalgebra of gl(F) called the 
Lie algebra of ®. Not every subalgebra of gl(F) arises in this way; 
those that do are called algebraic Lie algebras. Algebraic groups and 
their Lie algebras can now be studied by the methods of algebraic 
geometry. 

A subalgebra |) of a Lie algebra g is said to be nilpotent if, for each 
XGÏ), the endomorphism Y—>[X, Y] of g is nilpotent. The normalizer 
of a subalgebra t) is the largest subalgebra of g in which t) is an ideal. 
We define a Cartan subalgebra Ï) of g as a nilpotent subalgebra of g 
which is its own normalizer. 

A group is nilpotent if the ascending central series terminates with 
the whole group. The subgroup § of ® is called a Cartan subgroup if 
§ is a maximal nilpotent subgroup of ® and if every normal subgroup 
8 of finite index in § is of finite index in the normalizer of 8. 

The main objective of the lectures was the proof of the following 
theorem. 

Let ® be an irreducible algebraic group and let g be the Lie algebra 
of ®. If § is a Cartan subgroup of ®, then & is algebraic and its Lie 
algebra is a Cartan subalgebra of g. If 1} is a Cartan subalgebra of g, 
then it is the Lie algebra of some Cartan subgroup of ®. 

A. M. GLEASON 

THE STRUCTURE OF LOCALLY COMPACT GROUPS 

Lectures by Hidehiko Yamabe 

The main objective in the theory of locally compact groups is to 
relate them to Lie groups. The structure theorem can be stated as 
follows: 

THEOREM. Let G be a connected locally compact group. In every 
neighborhood of the identity there is a compact normal subgroup N such 
that G/N is a Lie group. 

While this result is not valid for disconnected locally compact 
groups, every locally compact group contains an open subgroup for 
which the above conclusion holds. This fact is easily deduced from the 
theorem as stated. 

The theorem was first proved for groups of finite topological dimen
sion by Montgomery and Zippin [3]. Yamabe [5; 6] has proved the 
general case using a refinement of a technique introduced by Gleason 
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[l ] in proving that finite-dimensional locally compact groups without 
small subgroups are Lie groups. 

The reasoning given by von Neumann [4] in his solution of Hu
bert's fifth problem for compact groups in conjunction with this 
theorem readily proves the affirmative answer to the customary form 
of Hubert's fifth problem: Every locally Euclidean group is a Lie 
group. 

Yamabe begins with a connected locally compact group G and 
proves that in any neighborhood of the identity there is a compact 
normal subgroup N f or which G/iVhas no small subgroups; i.e., there 
is a neighborhood V of the identity in G/N which contains no entire 
nontrivial subgroup. The remainder of the proof consists in showing 
that G/N is a Lie group. 

Starting once again with a connected locally compact group H 
having no small subgroups, he constructs a linear space T of "tangent 
vectors to £P' in L2(H), the Hilbert space of square integrable func
tions with respect to the Haar measure of H, and a homeomorphism 
of a neighborhood of the origin in T onto a compact subset of G. 
(This turns out to be the exponential mapping when T is identified 
with the Lie algebra of G.) The existence of such a homeomorphism 
proves that T has finite dimension. The inner automorphisms of H 
induce linear transformations on T; this gives a finite-dimensional 
representation of H whose kernel is just the center C. (This is the 
adjoint representation in the classical theory of Lie groups.) By von 
Neumann's theorem H/C is a Lie group. Since C is a locally compact 
abelian group without small subgroups, it is already known to be a 
Lie group from the work of Pontrjagin. At this point one can apply 
the theorem of Kuranishi [2] and deduce that H is a Lie group, but, 
since Kuranishi's proof depends on long arguments with differential 
equations, it is more satisfying to prove that His a Lie group directly. 
This Yamabe does by explicitly calculating the group multiplication 
in terms of the canonical coordinates induced in H by the exponential 
mapping of the tangent vectors. 
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A. M. GLEASON 

REPRESENTATION THEORY OF LlE ALGEBRAS OF CHARACTERISTIC p 

Lectures by Hans Zassenhaus 

1. Introduction. The first serious investigations of the linear rep
resentations of Lie algebras of prime characteristic were carried out 
by Zassenhaus [lO], who made an exhaustive study of the irreducible 
representations of nilpotent Lie algebras, and by Ho-Jui Chang [3], 
who determined the irreducible representations of the Witt algebras. 
At about the same time, Jacobson began his work on restricted Lie 
algebras of characteristic p>0, and proved a number of important 
theorems concerning their representations. These results give many 
indications of the shape a general theory must assume, but such a 
theory has been slow to materialize. Nevertheless, important results of 
a general nature have been obtained recently by Jacobson and Zas
senhaus. 

Jacobson's contribution, to be found in [7], included the observa
tion that the universal associative algebra 21 of a Lie algebra 8 over 
a field of characteristic p>0 is a finitely generated module over its 
center. This result led to a new and simple proof of Iwasawa's theo
rem that 8 has a faithful finite-dimensional representation, a proof of 
a conjecture of Che valley which asserts that every Lie algebra of prime 
characteristic has a representation which is not completely reducible, 
and a proof of the fact that 31 can be imbedded in a division algebra, 
finite-dimensional over its center. 

By exploiting the fact that 21 can be imbedded in a division ring, 
Zassenhaus exhibited a bound on the degree of the absolutely irre
ducible representation (a.i.r.) of 8, and proved that the maximum 
degree was assumed except for those a.i.r. which annihilate a certain 
discriminant ideal associated with 21. His methods also lead to the 
theorem that 8 has indecomposable representations of arbitrarily 
high degree. 

This report contains a more detailed description of these results, 
together with some comments on the proofs. A few unsolved problems 
have also been listed. 

2. The universal associative algebra. We begin with the result of 
Birkhoff [l] and Witt [9], which asserts that a Lie algebra 8 over an 
arbitrary field K has a faithful imbedding rj in an associative algebra 
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21*, which is universal in the sense that if a is any other imbedding of 
8, then there exists an associative homomorphism of 21* onto the en
veloping algebra of a. A universal imbedding of a finite-dimensional 
Lie algebra 8 with basis #i, • • • , xn may be constructed as follows. 
Form the free associative algebra fj over K on the elements Xij • • • , Xni 

and consider the difference algebra 5/33, where 33 is the ideal gener
ated by the elements XiXj—XjXi— ^yukXk, and [#*ffy] = ]L/Y<i*#* is 
the multiplication table in 8. Then the mapping 77: X ^ ^ ^ i E / * » ' 
• (#i+33) of 8 into 21* is a universal imbedding, and 21* is the envelop
ing algebra of rj. If we denote the cosets of the Xi by #»-, then it can be 
proved that the standard monomials xf • • • #*n, (ex, • • • , e^^O, 
form a basis of 21* over K, and that, since the Xi are linearly inde
pendent, the imbedding rj is faithful. We shall identify 8 with the 
linear part of 21*, and in particular, write xi, • • • , xn for the Xi. 

The importance of the universal enveloping algebra 21* for the 
theory of representations stems from the fact that there is a natural 
one-to-one correspondence between the representations of 8 and the 
representations of 21*, which can be described as follows. If a- is a 
representation2 of 8, then the unique associative homomorphism of 
21* onto the enveloping algebra of a defines a representation of 21*, 
and conversely, if r is a representation of 21*, and if rj is the universal 
imbedding, then a = 7jr is a representation of 8. 

For various technical reasons it is convenient to adjoin an identity 
element 1 ^x\xl • • • x^ to 21*, and the algebra 21 obtained, while it is 
not, strictly speaking, a universal enveloping algebra of 8, will be 
called nevertheless the universal associative algebra of 8. The one-to-
one correspondence between the representations of 8 and those of 21 
persists, for we can extend the representation of 21* corresponding to a 
given representation of 8 to one of 21 by mapping the identity element 
of 2Ï onto the identity linear transformation. 

We now introduce an increasing filtration of 21, that is, a family 
{21*, - < * > < ; < 00} of subspaces of 21 such that 2^Ç2tt+i, 1)21̂  = 21, 
and a^yCSkw. In fact, we set 2 U = 2L2= • • • ==(0); « 0 = 2 M , 
2li = 8, and we define 2Ï&, k>l, inductively to be the subspace 2ïfc-i 
+8*, where 8* consists of all finite sums of products au\U^ • • • Uk, 
a&K, WiG8. Then we define the degree d(x) of an element x by the 
formula d{x) =minX£3tt-i; then d is a function on 21 to the non-negative 
integers and - c o such that (i) d(ax)^d(x)1 aGK, (ii) d(x+y) 
^ m a x (d(x), d(y)), and (iii) d(xy) Sd(x)+d(y). This definition is 
independent of the choice of a basis in 21, but it can be shown easily 
that d(x) coincides with the notion of degree one is led to by writing 

2 It is not assumed that the representation space is finite-dimensional. 
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out x as a linear combination of the standard monomials. 
Corresponding to the algebra 31, together with the filtration {2t*}, 

we can associate a graded algebra 2ft which is, as a vector space, the 
direct sum of the spaces 3ït/3ït_i, and where the product of two cosets 
St£2ïï/9I;-i and $y£3ïy/8ty_i is defined to be the coset in 3t»-+y/2(»*+y-i 
of SiSj, where Si&i, and s3-&3'. The following result is the key to 
many of the arithmetic properties of the algebra St. 

THEOREM 1. The graded algebra 9ft associated with the universal asso
ciative algebra 31 of a Lie algebra 8, together with its filtration by degrees, 
is isomorphic to the polynomial ring K[Xh • • • , Xn], where n is the 
dimension of 8. 

This result seems to provide the natural setting for the following 
properties of the algebra 31, which can also be proved directly. The 
first result of interest states that the function d satisfies a sharper 
form of the relation (iii) above, namely d(xy) = d(x)-\-d(y). This 
formula implies on the one hand that 3Ï has no divisors of zero, and 
on the other hand, that the units of 31 coincide with the nonzero ele
ments of K' 1, so that 3Ï is semi-simple in the sense of Jacobson. 

A second property of 31, first established by Birkhoff and Whit
man [2], states that 3Ï satisfies the maximum condition for left ideals. 

We assume now, and throughout the remainder of the article, that the 
base field K has characteristic p>0. 

N. Jacobson proved in [7] that for each generator Xi of 3Ï there 
exists a nonzero polynomial / i £ i £ [ \ ] such that yi=fi(Xi) is in the 
center Ê of 31. Let 9î = 2f[yi, • • • , yn]. Then 9Î has two properties of 
importance: the commuting elements yi are algebraically independent 
over K, so tha t 9t is isomorphic to the polynomial ring in n variables; 
and it is possible to find a finite 9î-linearly independent set of pN gen
erators for the 9î-module 3Ï, where pN is the product of the degrees of 
the polynomials yi. Now let R be the quotient field of 9t, and form 
the tensor product D = tyt®R with respect to 9î. Since 3Ï is a free 
9î-module, the natural mapping x—>x®l of 31 into 31 ®R is an iso
morphism of 3Ï into D, and we shall identify 3Ï with its image in D. 
Then D has no divisors of zero, and since D is a finite-dimensional 
algebra over R, D is a division algebra. The center of D is the quotient 
field C of (5, the center of 31, and the dimension of D over C is an even 
power of p, which we shall denote by p2m. Finally it can be proved that 
31 is a bounded maximal order3 in D, that (S is integrally closed in C, 
and that S is integrally dependent on 9Î so that (S has degree of 
transcendence n over K, where n is the dimension of 8. 

8 Cf. N. Jacobson, The theory of rings, New York, 1943, Chap. 6. 



466 AMERICAN MATHEMATICAL SOCIETY [September 

3. General properties of the representations. We consider first an 
arbitrary irreducible representation a of 31 with kernel U. It is proved 
in [4] that 2Ï/U is a finite-dimensional algebra over Ky and this im
plies that every irreducible representation of 31 (and hence of S) has 
finite degree. If we combine this fact with the result that 21 is a semi-
simple algebra, so that the intersection of the kernels of the irreduci
ble representations of % is the zero ideal, then we can prove that 51 
has sufficiently many (finite-dimensional) irreducible representations. 
A consequence of this result is the following theorem (cf. [4]), which 
is actually a sharpened form of a result proved by Iwasawa [5] and 
Jacobson [7]. 

THEOREM 2. Every finite-dimensional Lie algebra over afield of char-
acteristic p>0 has a faithful finite-dimensional completely reducible 
representation. 

The rift between characteristic p and characteristic 0 widens when 
one observes that there is no class of algebras of characteristic p 
every one of whose representations is completely reducible. The pre
cise result, which was conjectured by Chevalley and proved by 
Jacobson [7], is the following. 

THEOREM 3. Every finite-dimensional Lie algebra over afield of prime 
characteristic has a finite-dimensional representation which is not com
pletely reducible. 

To gain a deeper insight towards the behavior of the irreducible 
representations, we adopt the approach of H. Zassenhaus, and con
sider the relations among the representations of the center S of 3Ï 
and the representations of 31 itself. A homomorphism <ï> of 31 is said to 
be an extension of a homomorphism 0 of S if 0 is the restriction of $ 
to (S. We note that if $ extends #, then the image 2Ï3? of 31 is a S$-
module. Then we can state a theorem due to Zassenhaus, which as
serts that if 0 is a homomorphism of S onto the base field K, then 
there exists a generic extension <Ê> of <f> with the property that if ^ 
is any other extension of <£, then there exists a (£0-module homo
morphism r of 31* onto SIŜ . The proof of this result depends only 
upon the structure of 31 as a finitely generated (S-module, and is based 
on the theory of elementary ideals due to Steinitz and Zassenhaus.4 

The main results on the absolutely irreducible representations 
which have been obtained to date, and which are due to Zassenhaus, 
can be derived in two ways: either by making use of the minimum 
polynomial of 3Ï as Zassenhaus has done, or by applying certain re-

4 Cf. H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig, 1937. 



1954] THE FIRST SUMMER MATHEMATICAL INSTITUTE 467 

suits on minimal identities for matrix algebras due to Levitzki and 
Amitsur [8]. We shall indicate both approaches to the subject, be
cause the relationship between them is a problem still to be worked 
out. 

First we consider Zassenhaus' approach. We select a module basis 
#i, • • • , ar for 21 over (S, and define the general element a of 2Ï to be 
^2Ui^iaiy a n element of the ring 21$ obtained by extending the 
coefficient ring of 21 from S to $ = E[-Xi, • • • , Xr], where the Xi are 
algebraically independent over Ê. Then Ayisa. subring of the algebra 
DQ obtained by extending the coefficient field of D from the quotient 
field of S to Q> the quotient field of $ , and a is an element of the 
finite-dimensional algebra DQ. Then a has a minimum polynomial 
/(X), whose coefficients are in ty since S is integrally closed. 

By comparing the degree of /(X) with the degree of the minimum 
polynomial of the general element of -4^, where S£ is an a.i.r. of A, 
the following result is obtained. 

THEOREM 4. The degree of every absolutely irreducible representation 
of 21 is less than or equal to pm, where p2m is the dimension of D over its 
center. 

The trace of the general element a of 21, which is the negative of the 
second coefficient of /(X), has the form ]£Xi <̂-X"<i X t £ S . We then de
fine the reduced trace tr{u) of an arbitrary element w£2t, w= 22&a*> 
& £ S, by the formula tr(^) = ^ X ^ - . Corresponding to the trace func
tion, there is a bilinear form g on 2ÏXSÏ—>S, namely g(x, 3/) =tr(ffy). 
We define the discriminant b of 2Ï over S to be the ideal in (£ generated 
by the determinants | g(ui, vk) | , where «1, • • • , up

2m and v\, • • • , vp
2m 

are arbitrary elements of 21. Then we can state 

THEOREM 5. Let K be an algebraically closed field. Let \[/ be a homo-
morphism of S onto K, and let ^ be a generic extension of \p. Then the 
following statements are equivalent. 

(i) 2RP is a central simple algebra over K; 
(ii) Wf? has an irreducible representation of degree pm, and hence 

every irreducible representation extending yp has degree pm; 
(iii) b ^ ( 0 ) . 

The bound on the degrees of the a.i.r. of 2t can also be obtained by 
applying the result of Levitzki and Amitsur, which states that the 
standard identity S2n(x) in In variables vanishes identically on the 
full matrix algebra of order n, but not on the full matrix ring of order 
5 for s>n. Moreover, if we consider the ideal b in 21 generated by the 
elements S2(p

2m-i)(Gi, • • • , #2(P2W*-D) where the a»- are arbitrary in 2Ï, 
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then a result analogous to Theorem 5 can be proved, specifically that 
the degree of an a.i.r. ̂  is pm if and only if bSIM (0). 

The following results have been obtained by Zassenhaus concerning 
the indecomposable representations. 

THEOREM 6. Let K be algebraically closed, and let * be an indecom
posable representation of 21. Then any two irreducible constituents of ^ 
have the same restrictions to E. 

There are examples, however, which show that an indecomposable 
representation may have inequivalent irreducible constituents. 

THEOREM 7. Let K be algebraically closed, and let ty be an arbitrary 
homomorphism of S onto K. Then there exist indecomposable represen
tations of arbitrarily high degree, each of which has an irreducible con
stituent extending \//. 

4. Special results and problems. The representation theory of nil-
potent Lie algebras over an algebraically closed field of characteristic 
p>0 has been studied fully by Zassenhaus in [lO] and [ l l ] . We sum
marize his main results, some of which (in particular Theorem 8) 
have been extended to niipotent Lie algebras over an infinite field by 
N. Jacobson and the writer. 

THEOREM 8. If S£ is an indecomposable representation of a niipotent 
Lie algebra 8 over an algebraically closed field, then any two irreducible 
constituents of ^ are equivalent. 

THEOREM 9. Let 8 be a niipotent Lie algebra over an algebraically 
closed field K. Then the degree of any irreducible representation of 8 is a 
power of p. If we select in 8 a basis (a\, • • • , an) such that, whenever 
i<jy [0<ay] G (a<+i, ' ' • $ an), then for each ordered set (Xx, • • • , Xn) 
of elements of K, there exists one and only one irreducible representation 
r :x—>xT of 8 such that \i is the unique eigenvalue of aiT, i = 1, • • • , n. 

A determination of the irreducible representations of the Witt 
algebras has been given by Ho-Jui Chang in [3]. By making use of 
graded algebra techniques, Zassenhaus has given new proofs of a 
number of these results [12] ; in particular he has given a direct proof 
of the theorem of Chang which states that the integer m for the ̂ -di
mensional Witt algebra 8 is exactly (p — l)/2, and thus the bound on 
the degree of the absolutely irreducible representations of 8 is given 
explicitly in this case. The values of m for simple algebras other than 
the Witt algebras are unknown at this time. 

We know that in general the center S of 21 does not coincide with 
the ring $l = K[yi, • • • , yn] described above. It seems to be an inter-



1954] THE FIRST SUMMER MATHEMATICAL INSTITUTE 469 

esting problem to determine the structure of the field extension of 
the quotient field of S over the quotient field of 9Î. I t is known that 
for nilpotent Lie algebras the extension is purely inseparable. 

The existence of an extension to 31 of a given homomorphism \[/ of Ë 
is known only when \f/ maps © onto a field. For the study of the inde
composable representations it is of importance to know whether \(/ 
can be extended if E^ is a primary algebra. Progress in this direction 
may wait upon a knowledge of the ideal theoretic properties of 2Ï 
considered as a maximal order in D. 

Jacobson has proved in [ô] that a restricted Lie algebra 2 has only 
a finite number of inequivalent irreducible representations. The repre
sentations of S are in 1-1 correspondence with the representations of 
the U-algebra of 8, which is a finite-dimensional algebra. The problem 
of the determination of the representations of 8 involves first of all 
detailed information concerning the radical of the U-algebra of 8. 

Another problem concerns the construction of representations of a 
Lie algebra 8 having prescribed constituents. For example, if ^ i and 
SF2 are irreducible representations of 8, does there exist an inde
composable representation of 8 having ^ i and ^ 2 as constituents? 
This problem can be formulated in terms of a cohomology theory for 
representation spaces. 
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SEMINAR ON SIMPLE LlE ALGEBRAS 

The heart of the structure theory for Lie algebras of characteristic 
0 is given by the following two statements: (1) An algebra with no 
solvable ideals is a direct sum of simple algebras, (2) The simple 
algebras are given by an explicit list, comprising four infinite families 
and five exceptional algebras. Statement (1) becomes false for char
acteristic p, and finding a substitute for it is a problem that awaits 
solution. I t seems to be timely to attack the classification of simple 
Lie algebras of characteristic p. Very likely a complete solution of this 
second problem would carry with it valuable hints for the solution of 
the first. I t is our purpose to give a list (believed to be essentially 
complete) of the known simple Lie algebras over an algebraically 
closed field. The list naturally falls into three parts: the classical 
algebras, the exceptional algebras, and the Witt algebra and its 
generalizations. 

Classical algebras. Type A. Let T be the Lie algebra of all n by n 
(n ^ 2) matrices of trace 0 over a field F. If the characteristic of F is 0 
or prime to n} T is a simple algebra (of dimension n2 — 1). If the char
acteristic does divide n, T still has a one-dimensional center Z con
sisting of all scalar matrices. Except when the characteristic is two 
and n — 2, T/Z is simple and has dimension n2 — 2. 

Types B, D. A matrix (a*;) is alternate if a»i = 0, at-y= — a^ for all i 
and j . Let S be the Lie algebra of all alternate nby n matrices over a 
field. For n = 3 and n ^ 5, S is a simple algebra of dimension n{n —1)/2. 

Type C. On a two-by-two matrix algebra we may define an involu
tion * as follows: 

/a b\ / d - i \ 

\c d) \ — c a) 

A matrix of even order, split into two by two blocks as (-4»v), admits 
an extension of this involution: (Ay)* —(Aft). Let 5 denote the Lie 
algebra of all matrices of order 2m, skew with respect to this involu
tion; S has dimension 2m2+m. For characteristic different from two, 
S is simple as it stands. If the characteristic is two and m is odd, 
m à 3, the cube of 5 is a simple algebra of order 2m2-— m — l. If m is 
even, w ^ 4 , the cube of S still has to be reduced modulo a one-di
mensional center, and we get a simple algebra of order 2m2—w — 2. 
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Exceptional algebras. Let C be the Cayley matrix algebra (i.e., 
the unique Cayley-Dickson algebra with no divisors of zero) over a 
field F. Let A be the algebra of derivations of C. Then A is always 
14-dimensional, and for characteristic different from 3 it is simple. 
When the characteristic is 3, A acquires a 7-dimensional ideal I of 
inner derivations, and I is isomorphic to the algebra of 3 by 3 
matrices of trace 0, reduced modulo the center. The algebra A/1 of 
outer automorphisms of I is again isomorphic to I. 

For characteristic 0 there are four more exceptional algebras, of 
orders 52, 78, 133, and 248. The analogues of these for characteristic p 
have yet to be investigated. Schafer and Tomber have proved that 
the obvious candidate for the 52-dimensional one (the derivations of 
the exceptional Jordan algebra) degenerates for characteristic two by 
acquiring a 26-dimensional ideal of inner derivations. 

The Witt algebra and its generalizations. Let F be a field of character
istic p and B the (commutative associative) ^-dimensional algebra 
over F generated by an element x satisfying xp — 0. Let A be the 
algebra of derivations of B. If we write Di for the derivation sending 
x into xi+l, the D's form a basis of A with multiplication table 
[-D»-i?i] = (i—j)Di+j. B is a ^-dimensional Lie algebra which is simple 
for p 7e 2; it was discovered by Witt. 

Two generalizations have been given in the literature. Zassenhaus 
used the same multiplication table, with the subscripts allowed to 
range over any additive subgroup of F (instead of the integers mod p). 
Jacobson took the derivation algebra of the algebra generated by 
several indeterminates with pth power 0. 

There is a family of algebras which includes both of these general 
izations. Let F be a vector space over F> and G a total additive group 
of functionals on V. Let A be the vector space direct sum of copies of 
Vy one for each member of G. The general element of A is expressible 
as a sum over G of elements (x, ce), x g F , a(£G. We define 

[(x, a)(y, (3)] = (a(y)x - P(x)y, a + p). 

The resulting Lie algebra is simple except when V is one-dimensional 
and the characteristic is two; there is then a simple ideal with dimen
sion smaller by one. Zassenhaus' algebra is the case where V is one-
dimensional, while Jacobson's is the case where G consists of all 
integer-valued functionals. 

I. KAPLANSKY 


