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W. T. MARTIN 

PART II . COMPLEX MANIFOLDS1 

The notion of a complex manifold is a natural outgrowth of that 
of a differentiable manifold. Its importance lies to a large extent in 
the fact that it includes as special cases the complex algebraic varie­
ties and the Riemann surfaces and furnishes the geometrical basis for 
functions of several complex variables. Its development has led to 
clarifications of classical algebraic geometry and to new results and 
problems. Two notions from algebraic topology have so far played 
an essential rôle: sheaves (faisceaux) and fiber bundles. But the 
deeper problems on complex manifolds are not entirely topological. 

1. Topology of complex manifolds. From the point of view of topol­
ogy a fundamental problem would be to characterize the orientable 
manifolds of even dimension 2n which can be given a complex struc­
ture. But this is too difficult and, at least at the present moment, one 

1 Acknowledgement. §4 on Stein manifolds is based on material prepared by Baily, 
Bremermann, and Gunning for Part I, later transferred to this part for the sake of 
harmony. N. Hawley prepared a summary of Ativan's work on projective bundles. 
The whole manuscript has been critically read by A. Borel, K. Kodaira, D. C. Spencer, 
H. C. Wang, A. Weil, and many others. While it is a pleasant duty of the writer to 
thank these mathematicians for their help and criticisms, it should be remarked that 
the report is prepared by the writer as an organized article, for whose shortcomings 
and inaccuracies these mathematicians are not responsible. 
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should be satisfied with necessary conditions. An immediate necessary 
condition is obtained by the consideration of the tangent bundle.2 

For the existence of a complex structure implies that the tangent 
bundle whose structural group is the general linear group GL(2n, R) 
in In real variables is equivalent to a bundle whose structural group 
is the general linear group GL(n, C) in n complex variables, con­
sidered as a subgroup of GL(2n, R). A manifold of even dimension 
2n with the latter property is called almost complex. Various neces­
sary conditions are known for a manifold to be almost complex. 

Among such necessary conditions the most effective ones are ex­
pressed in terms of the characteristic classes of the manifold, if we 
make the further assumption that the latter is compact. These are 
the Stief el-Whitney classes Wi£Hi(M,Z2),

z l ^ g 2 r c , a n d t h e Pontrja-
gin classes pkÇzHAk(M, Z), 1 Sk^ [n/2] [49]. If M is almost complex, 
its almost complex structure defines the Chern classes CkÇzH2k(M, Z), 
\-^kSn, [49]. The following relations between the characteristic 
classes give necessary conditions for a manifold to be almost complex 
[49]: 

(1) W' = 0, i odd, 

[n/2] n n 

(2) Z (-1)̂ = S(-i)^Ec 

Further necessary conditions are obtained by considering cohomology 
operations on the characteristic classes, in particular, the Steenrod 
squaring and reduced power operations. 

These conditions suffice to give the theorem that among the even-
dimensional spheres only S2 and SQ are almost complex. In fact, the 
absence of an almost complex structure on Sik was derived by Wu 
as a consequence of (2) and the facts: (1) pk = 0; (2) c2fc-Af = 2. By 
using the formulas expressing #>*cy as a polynomial of ci, • • • , cn 

(&l is a Steenrod reduced power operation), Borel and Serre proved 
that S2n is not almost complex for w ^ 4 [ô]. 

The question whether an almost complex manifold can be given a 
complex structure remains unanswered. In particular, the existence 

2 For basic notions on fiber bundles we refer the reader to Steenrod [42]. 
3 We shall be using the following notations, now customary: Z denotes the ring of 

integers, Zp (p prime) the finite field of p elements, R the real field, and C the complex 
field. If X is a topological space and G an abelian group, Hr(X, G) (resp. Hr(X, G)) 
denotes the r-dimensional cohomology (homology) group with coefficient group G. If 
G is a ring and yÇzHr(X, G), cCzHr(X, G), then ycÇzG denotes the pairing of the 
two groups into G. When M is an oriented manifold, the same notation will be used 
to denote its fundamental homology class. 
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or nonexistence of a complex structure on S5 is still one of the urgent 
unsolved problems on complex manifolds. The difficulty lies in the 
fact that there is at present no method to find topological implications 
of the existence of a complex structure, which is not already true for 
the existence of the underlying almost complex structure. On the other 
hand, for a given almost complex structure, necessary conditions are 
known in order that it defines a complex structure (Ehresmann-
Libermann-Eckmann-Frölicher [16; 17]). These conditions are 
sufficient, if the almost complex structure is analytic. 

Two complex structures on a manifold M are called inequivalent, 
if there exists no homeomorphism of M onto itself which transforms 
one complex structure into the other. Hirzebruch proved that the 
manifold S2 XS2 has an infinite number of inequivalent complex struc­
tures [20]. In his study of homogeneous complex manifolds (cf. §6), 
Wang [47] gave examples of manifolds, among which are products 
of two spheres of odd dimensions > 1, which have noncountably many 
inequivalent complex structures. However, it is undecided whether 
the complex projective plane has a complex structure inequivalent to 
its natural one. 

As a counterpart of the birational transformations in algebraic 
geometry, Hopf introduced the modification or the <r-process [26; 44] 
(cf. also the earlier work of Behnke-Stein [3]). Geometrically the 
process can be pictured as "blowing up" a submanifold which is 
complex-analytically imbedded in a complex manifold. I t allows the 
construction of new complex manifolds from given ones. Various 
questions concerning the effect of this process on the invariants of 
complex manifolds remain to be studied. 

2. Complex analytic bundles. Let F be a complex manifold acted 
on by a complex Lie group G of complex analytic homeomorphisms. 
To define a complex analytic bundle over a complex manifold M with 
fiber F we take a covering { Ui} of M by coordinate neighborhoods. 
The bundle over Ui is homeomorphic to UiX F and its points have 
the local coordinates (0, ji), zÇzUi, y%ÇîY, such that, if z G C V W i , 
the local coordinates (z, yi) and (z, y3) of the same point satisfy the 
relation yi = gij(z)yj, where g# (to be called the transition functions) 
defines a complex analytic mapping of UiC\ Uj into G. Perhaps the 
simplest case is when F is a complex vector space of q dimensions 
and G = GL(q, C). The bundle is then called a complex vector bundle. 
I t is to be observed that it is the group G and the transition functions 
{gi3(z)}, and not the fiber F, which play a basic role in the properties 
of the bundle. With a notion of equivalence introduced in a natural 
way, a fundamental problem would be to determine all classes of 
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bundles over M with a given group G. So far little progress has been 
made toward this "classification problem." In the case of complex line 
bundles, that is, complex vector bundles with g= 1 (cf. §3), the abelian 
character of the group GL(1, C) makes it possible to introduce a 
group operation in the set of complex line bundles and thus allows a 
complete enumeration of the complex line bundles over a complex 
manifold. Another contribution to this problem was recently made 
by Grothendieck, who classified the complex vector bundles over the 
complex projective line (not yet published). 

The topological theory of fiber bundles furnishes two tools which 
are of importance: the characteristic classes and the universal bundle 
theorem. The former are defined in terms of the underlying topologi­
cal bundle of the analytic bundle. In spite of this there are problems 
concerning them which are not entirely of topological nature. For 
instance, it has been proved that, for an algebraic variety, the dual 
homology classes of the characteristic classes of the tangent bundle 
contain representative cycles which are algebraic [ l l ] . This theorem 
can be proved by using the homology theory of fiber bundles, a 
method which will undoubtedly find further applications in the study 
of analytic bundles. On the other hand, the important homotopy 
methods in topological fiber bundles seem to have too much disregard 
for the complex structure and have so far not been found useful. 

The Grassmann manifold G(q, N) of all g-dimensional linear spaces 
through a point of a complex Euclidean space of dimension q+N is, 
in an obvious way, the base space of a bundle of complex vector spaces 
of dimension q. The Grassmann manifold itself can be identified with 
the manifold of all (g — l) -dimensional linear spaces in a complex 
projective space of dimension q + N— 1 and is a complex algebraic 
variety. As a result our bundle is an analytic bundle. A complex 
analytic mapping of a complex manifold M into G(q, N) gives rise 
to a complex analytic vector bundle over M. In contrast to the 
topological case, it is not true that every complex vector bundle over 
M can be defined in this way, even if N is allowed to be sufficiently 
large. 

If the base manifold M is an algebraic variety, a related theorem 
was proved by Nakano and Serre [37]: Let W be an analytic bundle 
of complex vector spaces of dimension q, with the transition functions 
{gtf(2)}» zÇzUiC\Uj, relative to a covering { Ui\ of Af, ga(z) being 
qXq nonsingular matrices. Let E be the complex line bundle defined 
by a generic hyperplane section of M, whose transition functions rela­
tive to the same covering of M are {ƒ#(«)}. Then, for a sufficiently 
large positive integer m, the bundle W{ — E)m, with the transition 
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functions {gij(z)f^m(z)}, is equivalent to one induced by a complex 
analytic mapping of M into a Grassmann manifold G(q, N). 

Two other groups appear prominently as the structure groups of 
analytic bundles: the nonhomogeneous complex linear group G'(q) in 
q variables and the linear fractional group K(q) in q variables, con­
sidered to be acting on the complex affine space Eq and the complex 
projective space Pq respectively. The corresponding bundles are 
called the affine and projective bundles. Projective bundles are of 
importance in algebraic geometry. These bundles are related to the 
vector bundles. In fact, the group T(q) of translations is a normal 
subgroup of G'(q) and G'{q)/T(q) is isomorphic to GL(q). Similarly, 
the group S of all scalar matrices X7 (XJ^O, I = identity matrix) is a 
normal subgroup of GL(q), and GL(q)/S is isomorphic to K(q — 1). 
By taking projections of the transition functions into quotient groups, 
we get a vector bundle from an affine bundle and a projective bundle 
of one less dimension from a vector bundle. These bundles shall be 
called the derived bundles. A necessary condition for two affine 
bundles (or two vector bundles) to be equivalent is that their derived 
bundles are equivalent. 

I t turns out that the property for a projective bundle to be the 
derived bundle of a vector bundle of one more dimension is equivalent 
to another important property. The Grassmann manifold G(qf N) is 
the base space of a bundle of projective spaces of dimension q — 1. 
We say that a projective bundle is regular if it can be induced by a 
complex analytic mapping of M into G(q, N). It follows from the 
theorem of Nakano and Serre that a projective bundle is regular if 
and only if it is the derived bundle of a vector bundle of one higher 
dimension. 

Because of our present limited knowledge of vector bundles the 
classification of affine and projective bundles has to be restricted to 
line bundles (q==l). The first invariant of an affine line bundle is the 
derived complex line bundle. Over a compact complex manifold M 
consider all the affine line bundles which have the same derived 
complex line bundle F, but are inequivalent to it.4 These affine line 
bundles can be set in a natural way into a one-one correspondence 

4 Relative to a covering { £/*•} of M let (z, y»), zÇ. U%, yiC.A (=affine line) be the 
local coordinates in the affine line bundle. Then, in UiC\Uj, the transition of co­
ordinates is given by yi~aa(z)yj-\-bij(z), where au(z), hj{z) are holomorphic functions 
in UiC\ Uj, The derived line bundle has by definition the transition functions {a%j{z)t 
zG UiC\ Uj}. The affine line bundle is said to be inequivalent to its derived complex 
line bundle, if it is not possible to make all ba(z)=*Q by an "analytic change of co­
ordinates. " 
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with the complex projective space derived from the vector space 
Hl{M, &(F)), where &(F) is the sheaf of germs of holomorphic cross-
sections of F [27; 36; 48] . If M is an algebraic variety, F is defined by 
a divisor class5 D and Q,(F) =£l(D) is the sheaf of germs of mero­
morphic functions > —D. The dimension i — i{D) =dim Hl(M, Q(D)) 
is then known as the index of specialty of D, if dim l f = l , and as 
the superabundance of Z>, if dim M = 2. 

The study of a projective line bundle begins with the question 
whether it is equivalent to an affine line bundle. A necessary and 
sufficient condition for this is that the projective line bundle has an 
analytic cross-section. If this is the case, the projective bundle is 
regular. The converse is true if the base manifold is an algebraic curve 
A projective line bundle over an algebraic curve is always regular 
(unpublished result of Kodaira, Serre). The classification of projective 
line bundles over an algebraic curve reduces to finding conditions that 
the reduced affine line bundles are projectively equivalent. This prob­
lem was solved by Atiyah [2]. Atiyah is able to apply his theory to 
ruled surfaces with a high degree of success. Many classical results 
become easily accessible, and he is able to add new ones. 

3. Sheaves (faisceaux)6. The cohomology groups of a manifold with 
a coefficient sheaf furnish the algebraic tool to formulate globally the 
properties of its local structure [9; 35; 41 ]. Its usefulness is based on 
the fact tha t the 0-dimensional cohomology group iY°(ikf, f) (f== co­
efficient sheaf) has a simple interpretation: It is the group of all cross 
sections T(M, f). But the consideration of the high-dimensional co­
homology groups is important, because of the following fundamental 
property: Let g be a subsheaf of f, and f/g be the quotient sheaf. Then 
the cohomology groups are related by an exact sequence of homo-
morphisms 

0 -> H\M, g) -^ H*(M, f) t> H%M, f/fl) ^ H\M, g) -> • • • 

( 3 ) -* H«{M, B) Z H«(M, f) £ H*(M, f/B) ^ H«+\M, B) -* • • •. 

As an example we consider the case that f =ju is the sheaf of germs 
of meromorphic functions and g =fi is the subsheaf of germs of holo­
morphic functions. A section of the quotient sheaf /x/Q is a system of 
principal parts. The classical additive Cousin problem consists in 
deciding whether such a system of principal parts is that of a global 
meromorphic function. In our terminology the problem is that of 

5 This is essentially a part of the theorem of Lefschetz, cf. §3. 
6 For a more complete discussion cf. Part III. 
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characterizing the image j°H°(M, ju) in H°(M, M/O) , or, since the 
sequence is exact, the kernel of 8° in H°(M, ju/^)» I t follows that the 
additive Cousin problem always has a solution if Hl(My fi) = 0 . 

The most important cohomology groups of a complex manifold M 
with a coefficient sheaf are the groups Hq(M, flp), where $lp is the 
sheaf of germs of holomorphic differential forms of type (p, 0). 
Cartan-Serre and Kodaira [10; 28] proved that the dimension 
hp*q of Hq(M, tip) is finite if M is compact. For a Kâhler manifold 
we have hp'q~hq'p. In general this relation is not true. Little is 
known about the combinations of hp>q which give topological invari­
ants of M. For a Kâhler manifold X)*>+«=r hv'q is equal to the r-
dimensional Betti number. 

There already exist many applications of sheaves to the study of 
complex manifolds and classical algebraic geometry. Among them we 
mention the works of Kodaira-Spencer on the identification of differ­
ent definitions of the arithmetic genera of algebraic varieties, on the 
lemma of Enriques-Severi-Zariski, the characteristic deficiency, etc. 
[31; 32; 33]. Hodge and Atiyah [24] applied sheaves to generalize a 
theorem of Picard-Lefschetz by proving that the maximum number 
of independent two-forms of the second kind on an algebraic variety 
is equal to Rz—p, where i?2 is the second Betti number and p is the 
Picard number. 

As an illustration let us dwell a little bit more on the work of 
Kodaira-Spencer on the classification of complex line bundles [32], 
All the complex line bundles over a complex manifold form an abelian 
group §. I t contains as a subgroup the divisor-class group (because a 
divisor defines a line bundle in an obvious way). The study of the 
group of complex line bundles is based on the exact sequence of 
sheaves: 

(4) 0~>Z-^O-ts2*--*0, 

where Q* is the sheaf of germs of nonzero holomorphic functions, j is 
the inclusion mapping, and e is defined by ef{z) = exp (27r( —1)1/2/(2;)). 
This exact sequence of sheaves gives rise to the following exact se­
quence of cohomology groups: 

0 -> Hl(M, Z) U Hl(M, 0) U H\M, Û*) -> H\M,Z) ~> - • • 

I t is easy to see that % is isomorphic to Hl{M, Î2*). If we identify 
these two groups, 8 maps a complex line bundle into its characteristic 
class. The image ÔIP(M, Q*) is the subgroup H?hl)(M, Z) of H\M, Z) 
consisting of all cohomology classes with integer coefficients which 
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can be represented by a real closed form of type (1, 1). In case M is a 
Kâhler manifold, this last condition is equivalent to saying that the 
harmonic part of the class is of type (1, 1). The kernel of 5 or the 
image of e* consists of those complex line bundles which are topologi-
cally product bundles. I t is a complex abelian Lie group and is called 
the Picard variety 9 of M. If M is a compact Kâhler manifold, its 
Picard variety is a complex torus of dimension i?i/2, where Ri is the 
first Betti number of M. 

The quotient group $/& which, according to the above discussion, 
is isomorphic to Hfhl)(M, Z) (or to the subgroup H^2(Mf Z) of 
i?2n-2(M\ Z) by duality in M), has another important interpretation 
when M is a compact algebraic variety. In this case it is isomorphic 
to G/Ga, where G is the group of all divisors on M and Ga the subgroup 
of all divisors which are homologous to zero with integer coefficients. 
The resulting isomorphism between G/Ga and H{2n%{M, Z) is known 
as Lefschetz's Theorem. I t can also be stated as a criterion for a 
(2w —2)-cycle to be algebraic (criterion of Lefschetz-Hodge, n 
= dim M): An integral (2^ — 2)-cycle on an algebraic variety of 
dimension n is homologous to a divisor if and only if its harmonic 
part is of type (1, 1). I t is a conjecture that this theorem has a gen­
eralization to (2n — 2<?)-cycles, to the effect that an integral (2n — 2q)-
cycle is homologous to an algebraic cycle if and only if its harmonic 
part is of type (g, q). 

The sheaf Q,p has a natural and important generalization QP(F), 
which is the sheaf of germs of holomorphic £-forms in a complex 
manifold M with values in a line bundle F. The corresponding 
cohomology groups Hq(M, QP(F)) are again finite-dimensional if M 
is compact. Among these cohomology groups we have the following 
duality theorem of Serre [40 ] : 

(5) H«(M, tip(F)) = Hn~*(M, Qn-*(-F)). 

In this isomorphism — F denotes the line bundle whose transition 
functions are the reciprocals of those of F. Actually Serre proved his 
theorem for the more general case of vector bundles. 

I t is important in applications to find sufficient conditions for cer­
tain cohomology groups Hq(M, f) to vanish. For Stein manifolds 
there are the famous theorems A and B of Cartan and Serre (cf. §4). 
Serre found the analogues of these theorems in the cases of the com­
plex projective space and of algebraic varieties in projective space. 
In the case of an algebraic variety M he showed that, for sufficiently 
large m, Hq(M, f®n(m£) )=0 , q^l, where f is a coherent analytic 
sheaf, E is the divisor defined by a hyperplane section, and 12 is the 
sheaf of germs of holomorphic functions in M. 
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While these theorems are adequate for many applications, Kodaira, 
by adopting a differential-geometric method originated from Boch-
ner, obtained other sufficient conditions for the vanishing of the 
groups Hq(M, QP(F)), q^l, where F is a complex line bundle. We 
say that F is ample, if its characteristic class contains a representative 
closed quadratic differential form of type (1,1) whose corresponding 
Hermitian differential form is positive definite. Similarly, one defines 
the notion for a complex line bundle to be sufficiently ample. Kodaira 
proved that H«(M, Q°(F)) = 0 , g ^ l , if F-K is ample, K being the 
canonical bundle of M [29]. Moreover, if F is sufficiently ample, 
then H«(M, Q*>(F))=0. On the other hand, Akizuki and Nakano 
proved that H*(M, Q»(F))=0, p+q^n-1, if F-K is ample [ l ] . 
These results are generalized by Spencer to vector bundles [35]. 

The interest in Kâhler manifolds lies in the fact that many theo­
rems on algebraic varieties are valid for compact Kâhler manifolds. 
I t is natural to ascertain the scope of this notion. The complex torus 
which does not satisfy the Riemann conditions gives an example of a 
nonalgebraic Kâhler manifold. An important theorem of Kodaira 
states that, if a compact Kâhler manifold is of restricted type, that is, 
if its fundamental two-form has integral periods over integral cycles, 
it is an algebraic variety [30]. The conjecture is not true that every 
compact Kâhler manifold can be transformed by monoidal transfor­
mations into an analytic bundle of complex tori over an algebraic 
variety (A. Blanchard [4]). 

4. Stein manifolds. The Stein manifolds (of dimension >0) are 
noncompact complex manifolds which generalize the domains of 
holomorphy and which possess a sufficiently large number of holo-
morphic functions. Precisely speaking, a Stein manifold M is a com­
plex manifold with a countable base, satisfying the following condi­
tions: 

(1) To any two points p, qE.M, p^q, there exists a holomorphic 
function ƒ in M, such that f(p) 9^f{q) ; 

(2) To every point pÇzM there exist n functions, holomorphic in 
My which form a local coordinate system at p ; 

(3) M is holomorphically convex. 
The following fundamental theorem accounts for most of the prop­

erties of Stein manifolds: 
A complex manifold M is a Stein manifold if and only if the follow­

ing two properties hold: 
(A) For any coherent sheaf f over M} the module of global cross-

sections of f over M generates at every point pÇ£ M the module of the 
local cross-sections fp. 
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(B) For any coherent sheaf f over M, H«(M, f) = 0 , q^ 1. 
This theorem is due to Oka and Cartan [9; 39]. The proof of the 

direct part, that is, that a Stein manifold has the properties (A) and 
(B), is difficult. The theorem has many consequences of which we 
mention the following: 

(1) The additive Cousin problem (cf. §3) always has a solution on 
a Stein manifold; 

(2) The second Cousin problem, the problem whether a given 
divisor is the divisor of a meromorphic function, has a solution on a 
Stein manifold if H2(M, Z) = 0; 

(3) Every meromorphic function on a Stein manifold is the quo­
tient of two holomorphic functions. 

A first topological implication of a Stein manifold (of complex 
dimension n, and hence of real dimension In) is that its ^-dimensional 
homology groups HP(M, Z) with integer coefficients are, for p>n, 
torsion groups. I t is not known whether they are all zero. 

Another unsolved problem is to characterize the open submanifolds 
of a Stein manifold which are again Stein manifolds. I t is also not 
known whether a covering manifold of a Stein manifold is a Stein 
manifold. 

5. Riemann-Roch theorem. It has been known that the Riemann-
Roch theorem can be formulated as a relation between the dimensions 
of certain cohomology groups with coefficient sheaves and the char­
acteristic classes. Its exact formulation and proof were recently 
achieved by Hirzebruch [22 ; 51 ] : Let M be an algebraic variety of di­
mension n, and W an analytic vector bundle over M, with fiber Eq and 
structural group GL(q} C). Let df 1 Si^n, be the Chern classes of the 
tangent bundle of M, and dj, l^j^q, be the Chern classes of the 
bundle W. Denote by ti(W) the sheaf of germs of holomorphic cross 
sections of W over M, and put 

n 

(6) X(M, W 0 B E ( - 1 ) ' d i m E*(M, O(WO). 

Introduce formally the quantities7», 1 ^i^n, Sy, 1 ^j^q, by the rela­
tions 

1+ £**« = 0(1 + 7**0. 

i + z ^ ' « n ( i + M 9 . 
3 = 1 3 - 1 

Then the function 
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(8) P(cu • • • , cn; du • • - , dq) « (e* + • • • + e'*) ft 7 ' 
* - * < - 1 

is symmetric in 7»- and 5y, and can be expressed as a power series in 
d, dj. I t can therefore be considered as a rational cohomology class 
of M. Following Hirzebruch, we put the symbol K2« before it to denote 
its value over the fundamental homology class of M. Then the 
Riemann-Roch-Hirzebruch theorem can be given as the formula 

X(M, W) 

(9) 

= K*\(e'i + • • • + e*«) ft ^ 1 
L f . i e~yi - l j 

= **["««'V1 + • • • + <*) ft . T ^ J -
L ,--i smh 7»/2J ai sinh 7»-/2_ 

I t is worth remarking that the product 

n T,/2 

*_i sinh (yi/2) 
can be expressed as a power series in the Pontrj agin classes of M, 
which depend only on the differentiable structure, and not on the 
complex structure, of M. This leads to the guess that the formula 
may be valid for any compact complex manifold, but Hirzebruch's 
proof makes essential use of the fact that M is an algebraic variety. 

If g — 1 , that is, if W is a line bundle which we now denote by F, 
the above formula reduces to 

do) X(if, F) - K2n ["««/w ft . 7 f 2 1> 
L ,~i smh (yi/2) J 

where ƒ is the characteristic class of F. If, moreover, F is a product 
bundle, then ƒ = 0 , and we have, by writing x ( ^ 0 f ° r x(-^> ^0» 

( ID x(M) - K2n[««/* ft . w / 2
w 1 • 

L ^ i smh(7rf/2)J 
The number in the right-hand side, which we shall denote by T(M), 
was first introduced by Todd [46] and is called the Todd genus. On 
the other hand, we have H*(M, 0) ~H°(M, Q*), so that the dimension 
gi of J3T*(Af, Q) is the dimension of the complex vector space of 
holomorphic i-forms, and we have 

(12) X(M) - 1 - gl + g2 + • • • + (~l)ngn. 

x(M) is related to the arithmetic genus pa(M) of M by the formula 

(12a) \ + {~\ypa(M) - x ( M ) . 
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Formula (11) thus expresses a relationship between the arithmetic 
genus and the Todd genus of an algebraic variety and implies in par­
ticular that the latter is an integer. 

Another particular case of (10) is the case when M is an algebraic 
curve. In this case we get from (10), 

(13) dim i D | - dim H°(M, 12(D)) - l = d-p + i, 

where D is a divisor, d its degree, p the genus of M, and 

i = dim Hl(M, 12(D)) = dim | K - D \ + 1 

is the index of specialty of the divisor class \D\. (13) is the classical 
Riemann-Roch theorem. Similarly, it can be seen that (9) includes 
as special cases other known versions of the Riemann-Roch theorem 
for algebraic varieties of two and three dimensions. 

An essential tool in Hirzebruch's proof of (9) is the so-called index 
theorem. For a manifold whose dimension is not a multiple of 4 we 
define its index r{M) to be zero. If M is of dimension 4fc, the cup 
product u\Ju, for uÇîH2h(M, R), gives rise to a nonsingular sym­
metric quadratic form in the vector space H2k(M, R), and the excess 
of the number of its positive eigenvalues over the number of its nega­
tive eigenvalues is called the index r(M) of M. By using the theory 
of "cobordisme" of Thorn, [45], Hirzebruch proved that 

(14) r(M4*) = Ku(Lk(ph • • • , ph)), 

where pu ' ' ' > Pk are the Pontrjagin classes of MAk, and Lk are cer­
tain polynomials with rational coefficients which, for & = 1, 2, 3, are 
given by 

1 1 2 
^ i = 77 Pu 1-2 = - r (7^2 — pi), 

3 45 
(15) t 

L3 = — : (62^3 - 12^1^2 + 2pl). 
945 

The proof of the index theorem (14) is based on the observation that 
both sides of (14) depend only on the cobordisme class in the sense of 
Thorn. Thorn's theory makes use of deep results of homotopy theory 
in algebraic topology. As the full force of his results is not needed here, 
it would be desirable to give a more direct proof of (14). But even 
for a four-dimensional manifold such a proof is not known. 

6. Homogeneous complex manifolds. An important class of com­
plex manifolds consists of the homogeneous ones, that is, those which 
admit a transitive group of complex automorphisms. If the manifold 
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M is compact, the group of all its complex automorphisms is a com­
plex Lie group; it is semi-simple if the Euler-Poincaré characteristic 
of M is > 0 . If M is a bounded domain, the group of all its com­
plex automorphisms is a real Lie group. Since M has then the Berg-
mann metric, which is a homogeneous Kahlerian metric, the group 
of isotropy of M is compact. For a general noncompact complex 
manifold it is well-known that the group of all its complex auto­
morphisms is not necessarily a Lie group. It is not known whether 
there exists a Lie group of complex automorphisms which acts transi­
tively on M. 

Wang determined all the compact homogeneous complex manifolds 
with a finite fundamental group [47; also 18]. In particular, those 
which are simply connected can be described as follows: Let K be a 
compact semi-simple Lie group, and Ts a toroidal subgroup of dimen­
sion 5. The centralizer Z of T* is locally a product of a toroid and a 
compact semi-simple group Q. A connected closed subgroup U of K is 
called a C-subgroup if there is a toroidal subgroup T* with the prop­
erty that QC UQZ. A simply connected compact homogeneous com­
plex manifold is homeomorphic to a real coset space K/ U, where K 
is a semi-simple compact Lie group and U a C-subgroup of K. Con­
versely, every such coset space K/U, if even-dimensional, can be 
given a homogeneous complex structure. 

Wang's work gives many examples of compact complex manifolds, 
besides the algebraic varieties. These include the product of two 
spheres of odd dimensions > 1, as first given by Calabi-Eckmann [7], 
and the even-dimensional compact Lie groups. The question of de­
termining the simply-connected compact homogeneous complex 
manifolds which are algebraic is simplified by a theorem of Lichner-
owicz [34], which states that a compact simply connected homo­
geneous Kâhler manifold has Euler-Poincaré characteristic > 0 . Goto, 
and independently Borel and Weil, proved that this condition is 
sufficient [19]. Goto also proved that the algebraic variety is rational. 

Much less is known about noncompact homogeneous complex 
manifolds. Borel studied the coset spaces of a real semi-simple Lie 
group which admit an invariant Kahlerian structure [5]. He proved 
that, if the coset space is noncompact, it is an analytic fiber bundle, 
with Kahlerian manifolds as fibers, over an Hermitian symmetric 
space. 

Perhaps the most important noncompact homogeneous complex 
manifolds are the homogeneous bounded domains. In this sense the 
question raised by E. Cartan is of importance, as to whether a homo­
geneous bounded domain is always symmetric. Borel [5 ] and Koszul 
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proved independently that this is the case if the group of all complex 
automorphisms is semi-simple. But the general question remains 
unanswered. 

7. Structures defined by infinite continuous pseudo-groups. It has 
been observed recently that the notion of an infinite continuous 
pseudo-group in the sense of Lie and Cartan gives rise to structures 
which generalize the complex structure. The significance of this 
generalization remains to be seen, and we restrict ourselves to a few 
general remarks [12; 13]. 

A transformation of an infinite pseudo-group is a coordinate trans­
formation (x1, - - • , xn)~->(xn, - • • , x'n) which represents a general 
integral of a system of partial differential equations in n independent 
and n dependent variables, with the property that the inverse of a 
transformation and the composition of two transformations are gen­
eral integrals of the same differential system. They form a pseudo-
group, and not a group, because the domain and the range of these 
transformations are allowed to vary. If the system of partial differen­
tial equations is supposed to be of the first order, the transformations 
can be defined to be those which reproduce n linearly independent 
Pfaffian forms up to a linear transformation of a given linear group. 
The latter is called the group of stability. The local theory of such 
pseudo-groups was developed by Lie and E. Cartan. I t is useful to 
remark that these pseudo-groups are numerous. 

Corresponding to every such pseudo-group there exists a type of 
structure on a class of differentiable manifolds, with the property 
that the transition of local coordinate systems is given by a trans­
formation of the pseudo-group. The complex structure and complex 
manifolds constitute a notable example of this general notion. There 
are, however, other structures which exist in a natural way. We men­
tion the leaved structure of Ehresmann-Reeb and the structure on an 
odd-dimensional manifold with a Pfaffian equation of the maximum 
class given everywhere. The latter structure exists on the manifold 
of tangent covariant directions of a differentiable manifold. (A co-
variant direction is the class of all nonzero covariant vectors which 
differ from each other by a factor.) A structure-preserving automor­
phism on such an odd-dimensional manifold is essentially what is 
known as a contact transformation. 

Many notions which have been developed in the theory of the 
complex structure can be generalized. Thus manifolds for which the 
structural group of the tangent bundle can be reduced to the group 
of stability of an infinite pseudo-group generalize the almost complex 
manifolds. There is also a natural generalization of the Kâhler prop-
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erty [13 ]. We can also define a class of manifolds analogous to the 
algebraic varieties. In fact, according to a theorem of Chow, the 
latter are complex manifolds which can be complex analytically im­
bedded in a complex projective space. The complex projective space 
is unique among the complex manifolds in the sense that it is the only 
simply connected, compact complex manifold with a group of com­
plex automorphisms which is transitive on the tangent directions. If 
certain "universal spaces" of our generalized structure can be de­
fined, universal in the sense that they admit a "large" group of struc­
ture-preserving automorphisms, then the analogues of algebraic vari­
eties will be the manifolds imbeddable in universal spaces with struc­
tures preserved. 

Finally, we remark that the sheaves will again be a useful tool in 
the study of such manifolds. Since the structural group of the tangent 
bundle can be restricted to the group of stability G and the represen­
tation of G in the space of alternating tensors may be reducible, we 
can speak of exterior differential forms of a type corresponding to any 
invariant subspace of such a representation. The sheaf of germs of 
differential forms of a given type is thus well defined. Moreover, 
from the exterior differentiation operator and projections of a differ­
ential form into one of a given type, various differential operators 
can be defined. This leads to the definition of cohomology groups 
whose study should be of importance in the theory of manifolds with 
structures in the sense we have explained. 
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SHIING-SHEN CHERN 

PART III . ALGEBRAIC SHEAF THEORY 

The cohomological methods, in conjunction with the powerful tool of 
harmonic integrals, were remarkably effective in the solution of global 
complex-analytic problems in general, and of problems of classical 
algebraic geometry in particular (Chern, Hirzebruch, Kodaira-
Spencer, Serre, and others). I t is natural to ask whether the cohomo­
logical methods can be equally effective in abstract algebraic geom­
etry where the method of harmonic integrals is no longer available. 


